首页> 外文期刊>Computational management science >Big data analytics: an aid to detection of non-technical losses in power utilities
【24h】

Big data analytics: an aid to detection of non-technical losses in power utilities

机译:大数据分析:帮助检测电力公司的非技术损失

获取原文
获取原文并翻译 | 示例

摘要

The great amount of data collected by the Advanced Metering Infrastructure can help electric utilities to detect energy theft, a phenomenon that globally costs over 25 billions of dollars per year. To address this challenge, this paper describes a new approach to non-technical loss analysis in power utilities using a variant of the P2P computing that allows identifying frauds in the absence of total reachability of smart meters. Specifically, the proposed approach compares data recorded by the smart meters and by the collector in the same neighborhood area and detects the fraudulent customers through the application of a Multiple Linear Regression model. Using real utility data, the regression model has been compared with other data mining techniques such as SVM, neural networks and logistic regression, in order to validate the proposed approach. The empirical results show that the Multiple Linear Regression model can efficiently identify the energy thieves even in areas with problems of meters reachability.
机译:先进计量基础设施收集的大量数据可以帮助电力公司检测能源盗窃,这种现象每年在全球造成的损失超过250亿美元。为了应对这一挑战,本文介绍了一种使用P2P计算变体的电力公用事业非技术损耗分析的新方法,该方法可在没有智能电表的总可达性的情况下识别欺诈。具体地,所提出的方法比较智能电表和收集器在相同邻域中记录的数据,并通过应用多元线性回归模型来检测欺诈客户。使用实际的效用数据,将回归模型与其他数据挖掘技术(例如SVM,神经网络和逻辑回归)进行了比较,以验证所提出的方法。实证结果表明,多元线性回归模型即使在存在电表可达性问题的地区也能有效地识别出窃贼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号