首页> 外文期刊>Computational management science >Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing
【24h】

Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing

机译:精确模拟布朗运动和跳跃扩散的最终,最小和最大值,并将其应用于期权定价

获取原文
获取原文并翻译 | 示例

摘要

We introduce a method for generating (W_(x,T)~((μ,σ)), m_(x,T)~((μ,σ)) , M_(x,T)~((μ,σ)) ), where W_(x,T)~((μ,σ)) denotes the final value of a Brownian motion starting in x with drift μ and volatility σ at some final time T, m_(x,T)~((μ,σ)) =inf0≤t≤T W_(x,T)~((μ,σ)) and M_(x,T)~((μ,σ))=rnsup0≤t≤T W_(x,T)~((μ,σ)). By using the trivariate distribution of (W_(x,T)~((μ,σ)),m_(x,T)~((μ,σ)), M_(x,T)~((μ,σ))), we obtain a fast method which is unaffected by the well-known random walk approximation errors. The method is extended to jump-diffusion models. As sample applications we include Monte Carlo pricing methods for European double barrier knock-out calls with continuous reset conditions under both models. The proposed methods feature simple importance sampling techniques for variance reduction.
机译:我们介绍一种生成(W_(x,T)〜((μ,σ)),m_(x,T)〜((μ,σ)),M_(x,T)〜((μ,σ) )),其中W_(x,T)〜((μ,σ))表示从x开始的布朗运动的最终值,在某个最终时间T处具有漂移μ和波动率σ,m_(x,T)〜(( μ,σ))=inf0≤t≤TW_(x,T)〜((μ,σ))和M_(x,T)〜((μ,σ))=rnsup0≤t≤TW_(x, T)〜(((μ,σ))。通过使用(W_(x,T)〜((μ,σ)),m_(x,T)〜((μ,σ)),M_(x,T)〜((μ,σ) )),我们获得了一种不受众所周知的随机游走近似误差影响的快速方法。该方法被扩展到跳跃扩散模型。作为示例应用程序,我们包括针对两种模式下具有连续重置条件的欧洲双重障碍淘汰赛电话的蒙特卡洛定价方法。所提出的方法具有用于减少方差的简单重要性抽样技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号