首页> 外文期刊>Computational Intelligence >Feature selection and classification using support vector machine and decision tree
【24h】

Feature selection and classification using support vector machine and decision tree

机译:使用支持向量机和决策树的功能选择和分类

获取原文
获取原文并翻译 | 示例

摘要

Breast cancer is one of the human threats which cause morbidity and mortality worldwide. The death rate can be reduced by advanced diagnosis. The objective of this article is to select the reduced number of features the help in diagnosing breast cancer in Wisconsin Diagnostic Breast Cancer (WDBC). This proposed model depicts women who all have no cancer cells or in benign stage later develop into malignant (metastases). Due to the dynamic nature of the big data framework, the proposed method ensures high confidence and low execution time. Moreover, healthcare information growth chases an exponential pattern, and current database systems cannot adequately manage the massive amount of data. So, it is requisite to adopt the "big data" solution for healthcare information.
机译:乳腺癌是人类威胁之一,导致全世界发病和死亡率。通过先进的诊断可以减少死亡率。本文的目的是选择减少威斯康星州诊断乳腺癌(WDBC)诊断乳腺癌的有助于的特征。这个提出的模型描绘了所有没有癌细胞或良性阶段的女性后来发展成恶性(转移)。由于大数据框架的动态性质,所提出的方法确保了高置信度和低执行时间。此外,医疗信息增长追逐指数模式,并且当前数据库系统无法充分管理大量数据。因此,需要采用医疗信息的“大数据”解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号