首页> 外文期刊>Computational Intelligence >NOISY TIME-SERIES PREDICTION USING PATTERN RECOGNITION TECHNIQUES
【24h】

NOISY TIME-SERIES PREDICTION USING PATTERN RECOGNITION TECHNIQUES

机译:模式识别技术的噪声时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

Time-series prediction is important in physical and financial domains. Pattern recognition techniques for time-series prediction are based on structural matching of the current state of the time-series with previously occurring states in historical data for making predictions. This paper describes a Pattern Modelling and Recognition System (PMRS) which is used for forecasting benchmark series and the US S&P financial index. The main aim of this paper is to evaluate the performance of such a system on noise free and Gaussian additive noise injected time-series. The results show that the addition of Gaussian noise leads to better forecasts. The results also show that the Gaussian noise standard deviation has an important effect on the PMRS performance. PMRS results are compared with the popular Exponential Smoothing method.
机译:时间序列预测在物理和财务领域很重要。用于时间序列预测的模式识别技术基于时间序列的当前状态与历史数据中先前发生的状态的结构匹配,以进行预测。本文介绍了一种模式建模和识别系统(PMRS),该系统用于预测基准系列和美国标准普尔金融指数。本文的主要目的是评估这种系统在无噪声和高斯加性噪声注入时间序列上的性能。结果表明,高斯噪声的增加导致更好的预测。结果还表明,高斯噪声标准偏差对PMRS性能有重要影响。将PMRS结果与流行的指数平滑方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号