首页> 外文期刊>Computational Intelligence >EFFECTIVE BIO-EVENT EXTRACTION USING TRIGGER WORDS AND SYNTACTIC DEPENDENCIES
【24h】

EFFECTIVE BIO-EVENT EXTRACTION USING TRIGGER WORDS AND SYNTACTIC DEPENDENCIES

机译:使用触发词和句法依赖关系有效地提取生物事件

获取原文
获取原文并翻译 | 示例

摘要

The scientific literature is the main source for comprehensive, up-to-date biological knowledge. Automatic extraction of this knowledge facilitates core biological tasks, such as database curation and knowledge discovery. We present here a linguistically inspired, rule-based and syntax-driven methodology for biological event extraction. We rely on a dictionary of trigger words to detect and characterize event expressions and syntactic dependency based heuristics to extract their event arguments. We refine and extend our prior work to recognize speculated and negated events. We show that heuristics based on syntactic dependencies, used to identify event arguments, extend naturally to also identify speculation and negation scope. In the BioNLP'09 Shared Task on Event Extraction, our system placed third in the Core Event Extraction Task (F-score of 0.4462), and first in the Speculation and Negation Task (F-score of 0.4252). Of particular interest is the extraction of complex regulatory events, where it scored second place. Our system significantly outperformed other participating systems in detecting speculation and negation. These results demonstrate the utility of a syntax-driven approach. In this article, we also report on our more recent work on supervised learning of event trigger expressions and discuss event annotation issues, based on our corpus analysis.
机译:科学文献是全面,最新的生物学知识的主要来源。自动提取该知识有助于完成核心生物学任务,例如数据库管理和知识发现。我们在这里介绍一种从语言启发,基于规则和语法驱动的生物事件提取方法。我们依靠触发词词典来检测和表征事件表达,并基于句法依赖的启发式方法来提取其事件参数。我们改进并扩展了我们以前的工作,以识别推测和否定的事件。我们证明了基于句法依赖的启发式方法,用于识别事件自变量,自然会扩展到识别推测和否定范围。在BioNLP'09事件提取共享任务中,我们的系统在核心事件提取任务中排名第三(F分数为0.4462),在推测和否定任务中排名第一(F分数为0.4252)。特别令人感兴趣的是提取复杂的监管事件,它获得了第二名。我们的系统在检测推测和否定方面明显优于其他参与系统。这些结果证明了语法驱动方法的实用性。在本文中,我们还将基于语料库分析报告有关事件触发器表达式的监督学习的最新工作,并讨论事件注释问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号