首页> 外文期刊>Computational Intelligence >GOAL-DRIVEN AUTONOMY FOR RESPONDING TO UNEXPECTED EVENTS IN STRATEGY SIMULATIONS
【24h】

GOAL-DRIVEN AUTONOMY FOR RESPONDING TO UNEXPECTED EVENTS IN STRATEGY SIMULATIONS

机译:在战略模拟中应对意外事件的目标驱动自主性

获取原文
获取原文并翻译 | 示例

摘要

To operate autonomously in complex environments, an agent must monitor its environment and determine how to respond to new situations. To be considered intelligent, an agent should select actions in pursuit of its goals, and adapt accordingly when its goals need revision. However, most agents assume that their goals are given to them; they cannot recognize when their goals should change. Thus, they have difficulty coping with the complex environments of strategy simulations that are continuous, partially observable, dynamic, and open with respect to new objects. To increase intelligent agent autonomy, we are investigating a conceptual model for goal reasoning called Goal-Driven Autonomy (GDA), which allows agents to generate and reason about their goals in response to environment changes. Our hypothesis is that GDA enables an agent to respond more effectively to unexpected events in complex environments. We instantiate the GDA model in ARTUE (Autonomous Response to Unexpected Events), a domain-independent autonomous agent. We evaluate ARTUE on scenarios from two complex strategy simulations, and report on its comparative benefits and limitations. By employing goal reasoning, ARTUE outperforms an off-line planner and a discrepancy-based replanner on scenarios requiring reasoning about unobserved objects and facts and on scenarios presenting opportunities outside the scope of its current mission.
机译:要在复杂环境中自主运行,代理必须监视其环境并确定如何应对新情况。要被认为是聪明的,座席应该选择为实现其目标而采取的行动,并在需要修改其目标时做出相应的调整。但是,大多数代理商都假定他们的目标已经实现。他们无法识别何时应该改变目标。因此,他们难以应对策略模拟的复杂环境,这些环境是连续的,部分可观察的,动态的并且相对于新对象是开放的。为了提高智能代理的自主性,我们正在研究一种称为目标驱动自主性(GDA)的目标推理概念模型,该模型允许代理根据环境变化生成目标并对其目标进行推理。我们的假设是,GDA使代理能够更有效地响应复杂环境中的意外事件。我们在与领域无关的自治代理ARTUE(对意外事件的自治响应)中实例化GDA模型。我们通过两个复杂的策略模拟对ARTUE的情景进行评估,并报告其相对优势和局限性。通过使用目标推理,ARTUE在需要对未观察到的对象和事实进行推理的场景以及在当前任务范围之外提供机会的场景上,胜过离线计划者和基于差异的重新计划者。

著录项

  • 来源
    《Computational Intelligence》 |2013年第2期|187-206|共20页
  • 作者单位

    Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory (Code 5514),Washington, DC, USA,Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304,USA;

    Knexus Research Corporation, Springfield, Virginia, USA;

    Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory (Code 5514),Washington, DC, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    goal-driven autonomy; autonomous agents; on-line planning; goal reasoning;

    机译:目标驱动的自主权;自治代理;在线计划;目标推理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号