首页> 外文期刊>Computational Intelligence >Incorporating Intra-Query Term Dependencies in an Aspect Query Language Model
【24h】

Incorporating Intra-Query Term Dependencies in an Aspect Query Language Model

机译:在方面查询语言模型中合并查询内术语依赖性

获取原文
获取原文并翻译 | 示例

摘要

Query language modeling based on relevance feedback has been widely applied to improve the effectiveness of information retrieval. However, intra-query term dependencies (i.e., the dependencies between different query terms and term combinations) have not yet been sufficiently addressed in the existing approaches. This article aims to investigate this issue within a comprehensive framework, namely the Aspect Query Language Model (AM). We propose to extend the AM with a hidden Markov model (HMM) structure to incorporate the intra-query term dependencies and learn the structure of a novel aspect HMM (AHMM) for query language modeling. In the proposed AHMM, the combinations of query terms are viewed as latent variables representing query aspects. They further form an ergodic HMM, where the dependencies between latent variables (nodes) are modeled as the transitional probabilities. The segmented chunks from the feedback documents are considered as observables of the HMM. Then the AHMM structure is optimized by the HMM, which can estimate the prior of the latent variables and the probability distribution of the observed chunks. Our extensive experiments on three large-scale text retrieval conference (TREC) collections have shown that our method not only significantly outperforms a number of strong baselines in terms of both effectiveness and robustness but also achieves better results than the AM and another state-of-the-art approach, namely the latent concept expansion model. (c) 2014Wiley Periodicals, Inc.
机译:基于关联反馈的查询语言建模已被广泛应用于提高信息检索的有效性。但是,在现有方法中,尚未充分解决查询内词条的依赖性(即,不同查询词和词条组合之间的依赖性)。本文旨在在综合框架(即方面查询语言模型(AM))中调查此问题。我们建议使用隐藏的马尔可夫模型(HMM)结构来扩展AM,以合并查询内词项依存关系,并学习用于查询语言建模的新颖方面HMM(AHMM)的结构。在提出的AHMM中,查询词的组合被视为表示查询方面的潜在变量。它们进一步形成遍历HMM,其中将潜在变量(节点)之间的依存关系建模为过渡概率。来自反馈文档的分段块被视为HMM的可观察对象。然后通过HMM对AHMM结构进行优化,HMM可以估计潜在变量的先验和观察到的块的概率分布。我们对三个大型文本检索会议(TREC)集合进行的广泛实验表明,我们的方法不仅在有效性和鲁棒性方面明显优于许多强大的基准,而且比AM和其他状态更好的结果最先进的方法,即潜在概念扩展模型。 (c)2014年威利期刊公司

著录项

  • 来源
    《Computational Intelligence》 |2015年第4期|699-720|共22页
  • 作者单位

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Univ E Anglia, Sch Comp, Norwich NR4 7TJ, Norfolk, England;

    Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    information retrieval; query language model; aspect hidden Markov model; intra-query term dependency; query decomposition;

    机译:信息检索;查询语言模型;方面隐马尔可夫模型;查询内词条依存性;查询分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号