首页> 外文期刊>Computational Intelligence >USING HASHTAGS TO CAPTURE FINE EMOTION CATEGORIES FROM TWEETS
【24h】

USING HASHTAGS TO CAPTURE FINE EMOTION CATEGORIES FROM TWEETS

机译:使用标签捕获推文中的精细情绪类别

获取原文
获取原文并翻译 | 示例

摘要

Detecting emotions in microblogs and social media posts has applications for industry, health, and security. Statistical, supervised automatic methods for emotion detection rely on text that is labeled for emotions, but such data are rare and available for only a handful of basic emotions. In this article, we show that emotion-word hashtags are good manual labels of emotions in tweets. We also propose a method to generate a large lexicon of word-emotion associations from this emotion-labeled tweet corpus. This is the first lexicon with real-valued word-emotion association scores. We begin with experiments for six basic emotions and show that the hashtag annotations are consistent and match with the annotations of trained judges. We also show how the extracted tweet corpus and word-emotion associations can be used to improve emotion classification accuracy in a different nontweet domain.Eminent psychologist Robert Plutchik had proposed that emotions have a relationship with personality traits. However, empirical experiments to establish this relationship have been stymied by the lack of comprehensive emotion resources. Because personality may be associated with any of the hundreds of emotions and because our hashtag approach scales easily to a large number of emotions, we extend our corpus by collecting tweets with hashtags pertaining to 585 fine emotions. Then, for the first time, we present experiments to show that fine emotion categories such as those of excitement, guilt, yearning, and admiration are useful in automatically detecting personality from text. Stream-of-consciousness essays and collections of Facebook posts marked with personality traits of the author are used as test sets.
机译:检测微博和社交媒体帖子中的情绪具有行业,健康和安全性的应用。统计,监督下的自动情绪检测方法依赖于标记有情绪的文本,但是此类数据很少,并且仅可用于少数基本情绪。在本文中,我们展示了情感词的标签是推文中情感的良好手动标签。我们还提出了一种从该带有情感标签的推文语料库中生成单词-情感关联的大型词典的方法。这是第一个具有实值的词-情感联想得分的词典。我们从六种基本情绪的实验开始,并显示主题标签的注释是一致的,并且与经过培训的法官的注释匹配。我们还展示了如何在不同的非推特域中使用提取的推特语料库和单词-情感关联来提高情感分类的准确性。著名心理学家罗伯特·普鲁奇克(Robert Plutchik)提出,情感与人格特质有关系。但是,由于缺乏全面的情感资源,建立这种关系的实证实验受到了阻碍。因为个性可能与数百种情绪中的任何一种相关,并且由于我们的标签方法可以轻松地扩展到大量情感,所以我们通过收集带有585种良好情感的标签的推文来扩展语料库。然后,我们首次进行了实验,显示出激动,内,向往和钦佩之类的良好情感类别可用于自动从文本中检测人格。带有作者个性特征的意识流文章和Facebook帖子集被用作测试集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号