首页> 外文期刊>Computational Intelligence >On Taxonomy and Evaluation of Feature Selection-Based Learning Classifier System Ensemble Approaches for Data Mining Problems
【24h】

On Taxonomy and Evaluation of Feature Selection-Based Learning Classifier System Ensemble Approaches for Data Mining Problems

机译:基于特征选择的学习分类器系统集成方法的数据挖掘问题分类与评价

获取原文
获取原文并翻译 | 示例

摘要

Ensemble methods aim at combining multiple learning machines to improve the efficacy in a learning task in terms of prediction accuracy, scalability, and other measures. These methods have been applied to evolutionary machine learning techniques including learning classifier systems (LCSs). In this article, we first propose a conceptual framework that allows us to appropriately categorize ensemble-based methods for fair comparison and highlights the gaps in the corresponding literature. The framework is generic and consists of three sequential stages: a pre-gate stage concerned with data preparation; the member stage to account for the types of learning machines used to build the ensemble; and a post-gate stage concerned with the methods to combine ensemble output. A taxonomy of LCSs-based ensembles is then presented using this framework. The article then focuses on comparing LCS ensembles that use feature selection in the pre-gate stage. An evaluation methodology is proposed to systematically analyze the performance of these methods. Specifically, random feature sampling and rough set feature selection-based LCS ensemble methods are compared. Experimental results show that the rough set-based approach performs significantly better than the random subspace method in terms of classification accuracy in problems with high numbers of irrelevant features. The performance of the two approaches are comparable in problems with high numbers of redundant features.
机译:集成方法旨在结合多个学习机,以根据预测准确性,可伸缩性和其他措施来提高学习任务的效率。这些方法已应用于包括学习分类器系统(LCS)在内的进化机器学习技术。在本文中,我们首先提出一个概念框架,使我们能够对基于集成的方法进行适当分类,以进行公平比较,并强调相应文献中的空白。该框架是通用的,由三个连续的阶段组成:与数据准备有关的登门前阶段;在成员阶段说明用于构建集成的学习机的类型;还有一个后门阶段,涉及合并整体输出的方法。然后使用此框架介绍了基于LCS的集成的分类法。然后,本文着重比较在预浇口阶段使用特征选择的LCS集成。提出了一种评估方法,以系统地分析这些方法的性能。具体而言,比较了随机特征采样和基于粗糙集特征选择的LCS集成方法。实验结果表明,在具有大量不相关特征的问题中,基于粗糙集的方法在分类准确度方面明显优于随机子空间方法。在具有大量冗余功能的问题中,这两种方法的性能相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号