首页> 外文期刊>Computational Intelligence >Improving the Local Search Ability of Spider Monkey Optimization Algorithm Using Quadratic Approximation for Unconstrained Optimization
【24h】

Improving the Local Search Ability of Spider Monkey Optimization Algorithm Using Quadratic Approximation for Unconstrained Optimization

机译:利用二次逼近无约束优化提高蜘蛛猴优化算法的局部搜索能力

获取原文
获取原文并翻译 | 示例

摘要

Spider monkey optimization (SMO) algorithm, which simulates the food searching behavior of a swarm of spider monkeys, is a new addition to the class of swarm intelligent techniques for solving unconstrained optimization problems. The purpose of this article is to study the performance of SMO after incorporating quadratic approximation (QA) operator in it. The proposed version is named as QA-based spider monkey optimization (QASMO). An experimental study has been carried out to check the validity and applicability of QASMO. For validation purpose, the performance of QASMO is tested over a benchmark set of 46 scalable and nonscalable problems, and results are compared with the original SMO algorithm. In order to test the applicability of the proposed algorithm in solving real-life optimization problems, one of the most challenging optimization problems, namely, Lennard-Jones (LJ) problem is considered. LJ clusters containing atoms from three to ten have been taken into consideration, and results are presented. To the best of our knowledge, this is the first attempt to apply SMO and its proposed variant on a real-life problem. The results demonstrate that incorporation of QA in SMO has positive effects on its performance in terms of reliability, efficiency, and accuracy.
机译:蜘蛛猴优化(SMO)算法模拟了一群蜘蛛猴的食物搜索行为,它是用于解决无约束优化问题的一群智能技术中的新成员。本文的目的是在将SMO纳入二次逼近(QA)运算符之后研究其性能。提议的版本被命名为基于QA的蜘蛛猴优化(QASMO)。已经进行了实验研究以检验QASMO的有效性和适用性。为了验证目的,在包含46个可伸缩和不可伸缩问题的基准测试集上对QASMO的性能进行了测试,并将结果与​​原始SMO算法进行了比较。为了测试该算法在解决现实生活中的优化问题的适用性,考虑了最具挑战性的优化问题之一,即Lennard-Jones(LJ)问题。已经考虑了包含3至10个原子的LJ团簇,并给出了结果。据我们所知,这是将SMO及其建议的变体应用于实际问题的首次尝试。结果表明,将QA并入SMO会对可靠性,效率和准确性产生积极影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号