首页> 外文期刊>Evolutionary computation >Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria
【24h】

Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria

机译:具有二次逼近的局部搜索成模算法,用于多准则优化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a local search optimizer that, employed as an additional operator in multiobjective evolutionary techniques, can help to find more precise estimates of the Pareto-optimal surface with a smaller cost of function evaluation. The new operator employs quadratic approximations of the objective functions and constraints, which are built using only the function samples already produced by the usual evolutionary algorithm function evaluations. The local search phase consists of solving the auxiliary multiobjective quadratic optimization problem defined from the quadratic approximations, scalarized via a goal attainment formulation using an LMI solver. As the determination of the new approximated solutions is performed without the need of any additional function evaluation, the proposed methodology is suitable for costly black-box optimization problems.
机译:本文提出了一种本地搜索优化器,该搜索器在多目标进化技术中用作附加运算符,可以帮助以较小的函数评估成本找到帕累托最优曲面的更精确估计。新的算子使用目标函数和约束的二次近似值,这些函数仅使用通常的进化算法函数求值已经生成的函数样本来构建。局部搜索阶段包括解决由二次逼近定义的辅助多目标二次优化问题,该问题通过使用LMI求解器通过目标达成公式进行标量。由于无需任何额外的功能评估即可确定新的近似解,因此所提出的方法适用于代价高昂的黑盒优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号