首页> 外文期刊>Computational Intelligence >Logistic regression in large rare events and imbalanced data: A performance comparison of prior correction and weighting methods
【24h】

Logistic regression in large rare events and imbalanced data: A performance comparison of prior correction and weighting methods

机译:大型稀有事件和不平衡数据中的逻辑回归:先验校正和加权方法的性能比较

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to use the truncated Newton method in prior correction logistic regression (LR). A regularization term is added to prior correction LR to improve its performance, which results in the truncated-regularized prior correction algorithm. The performance of this algorithm is compared with that of weighted LR and the regular LR methods for large imbalanced binary class data sets. The results, based on the KDD99 intrusion detection data set, and 6 other data sets at both the prior correction and the weighted LRs have the same computational efficiency when the truncated Newton method is used in both of them. A higher discriminative performance, however, resulted from weighting, which exceeded both the prior correction and the regular LR on nearly all the data sets. From this study, we conclude that weighting outperforms both the regular and prior correction LR models in most data sets and it is the method of choice when LR is used to evaluate imbalanced and rare event data.
机译:这项研究的目的是在先前的校正逻辑回归(LR)中使用截断的牛顿法。将正则项添加到先验校正LR以改善其性能,这会导致截断后的正则化先验校正算法。将该算法的性能与加权LR和常规LR方法的性能进行比较,以处理大型不平衡二进制类数据集。基于KDD99入侵检测数据集以及在先验校正和加权LR时的其他6个数据集,当在两者中均使用截断牛顿法时,结果具有相同的计算效率。但是,加权产生了更高的判别性能,它在几乎所有数据集上都超过了先前的校正和常规的LR。从这项研究中,我们得出结论,在大多数数据集中,加权均优于常规和先前校正的LR模型,这是使用LR评估不平衡和罕见事件数据时的选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号