首页> 外文期刊>Computational Intelligence Magazine, IEEE >Memetic Compact Differential Evolution for Cartesian Robot Control
【24h】

Memetic Compact Differential Evolution for Cartesian Robot Control

机译:直觉机器人控制的模因紧凑差分进化

获取原文

摘要

This article deals with optimization problems to be solved in the absence of a full power computer device. The goal is to solve a complex optimization problem by using a control card related to portable devices, e.g. for the control of commercial robots. In order to handle this class of optimization problems, a novel Memetic Computing approach is presented. The proposed algorithm employs a Differential Evolution framework which instead of processing an actual population of candidate solutions, makes use of a statistical representation of the population which evolves over time. In addition, the framework uses a stochastic local search algorithm which attempts to enhance the performance of the elite. In this way, the memetic logic of performing the optimization by observing the decision space from complementary perspectives can be integrated within computational devices characterized by a limited memory. The proposed algorithm, namely Memetic compact Differential Evolution (McDE), has been tested and compared with other algorithms belonging to the same category for a real-world industrial application, i.e. the control system design of a cartesian robot for variable mass movements. For this real-world application, the proposed McDE displays high performance and has proven to considerably outperform other compact algorithms representing the current state-of-the-art in this sub-field of computational intelligence.
机译:本文讨论了在没有全功能计算机设备的情况下要解决的优化问题。目标是通过使用与便携式设备有关的控制卡来解决复杂的优化问题,例如用于控制商用机器人。为了处理此类优化问题,提出了一种新颖的模因计算方法。所提出的算法采用差分进化框架,该差分进化框架代替处理候选解决方案的实际种群,而是利用随着时间演化的种群的统计表示。此外,该框架使用一种随机的本地搜索算法,该算法试图提高精英的表现。这样,可以通过从互补的角度观察决策空间来执行优化的模因逻辑可以集成到以有限内存为特征的计算设备中。已经对提出的算法即Memetic紧凑差分进化(McDE)进行了测试,并将其与属于同一类别的其他算法进行了实际工业应用(即用于可变质量运动的笛卡尔机器人的控制系统设计)进行了比较。对于此实际应用,拟议的McDE具有高性能,并已证明其性能远远优于其他紧凑型算法,这些算法代表了该计算智能子领域中的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号