首页> 外文期刊>IEEE computational intelligence magazine >QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT
【24h】

QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT

机译:QoE驱动的以内容为中心的缓存以及在启用了边缘的IoT中的深度强化学习

获取原文
获取原文并翻译 | 示例

摘要

Edge-enabled Internet of Things (IoT) services for users are subject to intelligent management of content-centric caching. Although managing edge caching can reduce storage cost and transmission latency, maintaining a high Quality of Experience (QoE) of caching is still a crucial challenge. In this environment, we study QoE-based content-centric caching. To evaluate the qualities of edge-enabled IoT, we introduce a QoE model which can grasp the influencing factors: (1) storage cost, based on available bandwidth, and (2) transmission latency, depending on the Signal-to-Interference-plus-Noise Ratio (SINR) and caching capacity. As the requirements and signals are stochastic, we use a Reinforcement Learning (RL) architecture to jointly determine the Q-value. Estimating the Q-value, constrained by a maximum QoE, can be conducted in a Deep Neural Network (DNN) approximator, as the states and action spaces are on a large scale. Unfortunately, training DNN models can lead to RL instability. To address this issue, fixed target network, experience replay, and adaptive learning rate methods are proposed to balance the Q-value accuracy and accelerate stability in Deep RL (DRL). Experimental results indicate that our approach can gain a higher value of QoE, compared to existing methods.
机译:为用户提供的具有边缘功能的物联网(IoT)服务受以内容为中心的缓存的智能管理。尽管管理边缘缓存可以减少存储成本和传输延迟,但是保持高质量的缓存体验(QoE)仍然是一项关键挑战。在这种环境下,我们研究基于QoE的以内容为中心的缓存。为了评估支持边缘的物联网的质量,我们引入了一个QoE模型,该模型可以掌握以下影响因素:(1)基于可用带宽的存储成本,以及(2)取决于信号干扰的传输延迟-噪声比(SINR)和缓存容量。由于需求和信号是随机的,因此我们使用强化学习(RL)架构共同确定Q值。由于状态和动作空间规模较大,可以在深度神经网络(DNN)逼近器中估算受最大QoE约束的Q值。不幸的是,训练DNN模型可能导致RL不稳定。为了解决此问题,提出了固定目标网络,体验重播和自适应学习率方法,以平衡Q值准确性并加快Deep RL(DRL)的稳定性。实验结果表明,与现有方法相比,我们的方法可以获得更高的QoE值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号