机译:基于深度加强学习在内容为中心的绿色资源配置
Nanjing Univ Posts & Telecommun Jiangsu Engn Res Ctr Commun & Network Technol Nanjing 210003 Jiangsu Peoples R China;
Nanjing Univ Posts & Telecommun Natl Engn Res Ctr Commun & Networking Nanjing 210003 Jiangsu Peoples R China|Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;
Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China;
Univ Aizu Sch Comp Sci & Engn Aizu Wakamatsu Fukushima 9658580 Japan;
Nanjing Univ Posts & Telecommun Jiangsu Engn Res Ctr Commun & Network Technol Nanjing 210003 Jiangsu Peoples R China;
Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China;
Quality of experience; Resource management; Computational modeling; Heuristic algorithms; Quality of service; Wireless networks; Electronic mail; Green resource allocation; QoE; content-centric computing; IoT; deep reinforcement learning;
机译:使用IOT内容为中心服务的增强学习优化资源分配
机译:基于IOT Edge Compling的深度加强学习的资源配置
机译:基于深度加强基于学习的窄带认知无线电信息系统资源分配
机译:边缘计算驱动的电力物联网中基于深度强化学习的绿色资源分配机制
机译:基于加强学习的移动边缘计算网络中的资源分配和任务分配框架
机译:一种图形卷积网络的资源分配在认知无线电网络中的基于卷积网络的深度加强学习方法
机译:基于深度加强学习的服务导向的智能网格中的资源分配