首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Green Resource Allocation Based on Deep Reinforcement Learning in Content-Centric IoT
【24h】

Green Resource Allocation Based on Deep Reinforcement Learning in Content-Centric IoT

机译:基于深度加强学习在内容为中心的绿色资源配置

获取原文
获取原文并翻译 | 示例

摘要

In the era of information, the green services of content-centric IoT are expected to offer users the better satisfaction of Quality of Experience (QoE) than that in a conventional IoT. Nevertheless, the network traffic and new demands from IoT users increase along with the promising of the content-centric computing system. Therefore, the satisfaction of QoE will become the major challenge in the content-centric computing system for IoT users. In this article, to enhance the satisfaction of QoE, we propose QoE models to evaluate the qualities of the IoT concerning both network and users. The value of QoE does not only refer to the network cost, but also the Mean Opinion Score (MOS) of users. Therefore, our models could capture the influence factors from network cost and services for IoT users based on IoT conditions. Specially, we mainly focus on the issues of cache allocation and transmission rate. Under this content-centric IoT, aiming to allocate the cache capacity among content-centric computing nodes and handle the transmission rates under a constrained total network cost and MOS for the whole IoT, we devote our efforts to the following two aspects. First, we formulate the QoE as a green resource allocation problem under the different transmission rate to acquire the best QoE. Then, in the basis of the node centrality, we will propose a suboptimal dynamic approach, which is suitable for IoT with content delivery frequently. Furthermore, we present a green resource allocation algorithm based on Deep Reinforcement Learning (DRL) to improve accuracy of QoE adaptively. Simulation results reveal that our proposals could achieve high QoE performance for content-centric IoT.
机译:在信息时代,内容为中心的IOT绿色服务将提供比传统物联网更好地满足经验质量(QoE)。尽管如此,与内部计算系统的有希望增加,网络流量和新的需求随着所用内容的计算系统而增加。因此,QoE的满足将成为IOT用户以内容为中心的计算系统中的主要挑战。在本文中,为了提高QoE的满足,我们提出了QoE模型来评估网络和用户的IOT的品质。 QoE的价值不仅指网络成本,而且是用户的平均意见分数(MOS)。因此,我们的模型可以根据IOT条件捕获来自网络成本和IoT用户服务的影响因素。特别是,我们主要关注缓存分配和传输速率的问题。在这种以本内容为中心的IOT下,旨在在以内容为中心的计算节点之间分配高速缓存容量,并根据整个IOT的约束总网络成本和MOS下处理传输速率,我们将我们的努力投入到以下两个方面。首先,我们将QoE作为绿色资源分配问题的不同传输速度,以获取最好的QoE。然后,在节点中心性的基础上,我们将提出一种次优的动态方法,其适用于经常具有内容交付的IOT。此外,我们介绍了一种基于深度加强学习(DRL)的绿色资源分配算法,可自适应地提高QoE的准确性。仿真结果表明,我们的建议可以为内容为中心的IOT实现高QoE表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号