首页> 外文期刊>Computational Intelligence and AI in Games, IEEE Transactions on >Relationship Between Generalization and Diversity in Coevolutionary Learning
【24h】

Relationship Between Generalization and Diversity in Coevolutionary Learning

机译:协同学习中泛化与多样性之间的关系

获取原文
获取原文并翻译 | 示例

摘要

Games have long played an important role in the development and understanding of coevolutionary learning systems. In particular, the search process in coevolutionary learning is guided by strategic interactions between solutions in the population, which can be naturally framed as game playing. We study two important issues in coevolutionary learning—generalization performance and diversity—using games. The first one is concerned with the coevolutionary learning of strategies with high generalization performance, that is, strategies that can outperform against a large number of test strategies (opponents) that may not have been seen during coevolution. The second one is concerned with diversity levels in the population that may lead to the search of strategies with poor generalization performance. It is not known if there is a relationship between generalization and diversity in coevolutionary learning. This paper investigates whether there is such a relationship in coevolutionary learning through a detailed empirical study. We systematically investigate the impact of various diversity maintenance approaches on the generalization performance of coevolutionary learning quantitatively using case studies. The problem of the iterated prisoner's dilemma (IPD) game is considered. Unlike past studies, we can measure both the generalization performance and the diversity level of the population of evolved strategies. Results from our case studies show that the introduction and maintenance of diversity do not necessarily lead to the coevolutionary learning of strategies with high generalization performance. However, if individual strategies can be combined (e.g., using a gating mechanism), there is the potential of exploiting diversity in coevolutionary learning to improve generalization performance. Specifically, when the introduction and maintenance of diversity lead to a speciated population during coevolution, where each specialist strategy is capab-nle of outperforming different opponents, the population as a whole can have a significantly higher generalization performance compared to individual strategies.
机译:长期以来,游戏在共同进化学习系统的开发和理解中起着重要作用。尤其是,协同进化学习中的搜索过程受总体解决方案之间的战略交互作用的指导,可以自然地将其构造为玩游戏。我们使用游戏研究协同进化学习中的两个重要问题,即泛化性能和多样性。第一个问题涉及具有高泛化性能的策略的协同进化学习,也就是说,该策略可以胜过在协同进化过程中可能未见的大量测试策略(对手)。第二个问题与人口中的多样性水平有关,这可能导致寻找泛化表现不佳的策略。尚不清楚协同进化学习中的泛化和多样性之间是否存在关系。本文通过详细的经验研究来研究在协同进化学习中是否存在这种关系。我们使用案例研究定量地研究了各种多样性维持方法对协同进化学习的泛化性能的影响。考虑了迭代囚徒困境(IPD)游戏的问题。与过去的研究不同,我们可以衡量整体发展情况和进化策略群体的多样性水平。我们的案例研究结果表明,多样性的引入和维持并不一定会导致具有较高泛化性能的策略的协同进化学习。但是,如果可以组合单个策略(例如,使用门控机制),则有可能在协进化学习中利用多样性来提高泛化性能。具体来说,当多样性的引入和维持导致共同进化过程中的特定种群时,其中每个专家策略的胜任能力都超过了不同的对手,因此总体上,与单个策略相比,种群具有更高的泛化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号