首页> 外文期刊>Computational Imaging, IEEE Transactions on >Physics-Based Regularizer for Joint Soft Segmentation and Reconstruction of Electron Microscopy Images of Polycrystalline Microstructures
【24h】

Physics-Based Regularizer for Joint Soft Segmentation and Reconstruction of Electron Microscopy Images of Polycrystalline Microstructures

机译:基于物理的正则化器用于多晶微结构的电子显微图像的联合软分割和重构

获取原文
获取原文并翻译 | 示例

摘要

For Bayesian image reconstruction applications in which the measured image follows from physical considerations, it is desirable to incorporate the corresponding physics into the prior model. In this paper, we use a phase-field as the physics-based prior model to implement the soft segmentation and reconstruction of noisy microstructural images of a polycrystalline, covalent material (SiC). The functional form of this prior is based on a coarse-grained Ginzburg-Landau free energy that embodies the underlying physics, and its phenomenological parameters are obtained from atomistic computer simulation. In particular, we compare an existing functional form developed by Fan and Chen for microstructural simulations with one developed here that is better suited to noise reduction in image reconstruction, and find that the latter form is indeed superior in this context. Numerical and experimental results demonstrate that the proposed method performs successful soft segmentation and reconstruction of microscopy images, even at very low signal levels. In addition, the superior performance of the proposed model for several case studies in comparison with state-of-the-art methods, such as BM3D and one using a MRF-based prior, is demonstrated.
机译:对于贝叶斯图像重建应用,在该应用中,所测量的图像是从物理考虑出发的,因此希望将相应的物理方法合并到现有模型中。在本文中,我们使用相场作为基于物理学的先验模型来实现软分割和重建多晶共价材料(SiC)的噪声微结构图像。该先验的功能形式基于体现基本物理原理的粗糙的Ginzburg-Landau自由能,并且其现象学参数是从原子计算机模拟获得的。特别是,我们将Fan和Chen开发的用于微观结构仿真的现有功能形式与此处开发的一种更适合于图像重建中的降噪的功能形式进行了比较,发现在这种情况下,后者的形式确实更好。数值和实验结果表明,即使在非常低的信号水平下,该方法也能成功完成显微镜图像的软分割和重建。此外,与几种最新的方法(例如BM3D和使用基于MRF的先验方法)相比,该模型在多个案例研究中的优越性能也得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号