首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Sequential Block-Structured Dictionary Learning Algorithm for Block Sparse Representations
【24h】

A Sequential Block-Structured Dictionary Learning Algorithm for Block Sparse Representations

机译:块稀疏表示的顺序块结构字典学习算法

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning algorithms have been successfully applied to a number of signal and image processing problems. In some applications, however, the observed signals may further have a multisubspace structure that enables block-sparse signal representations. For this case, a new algorithm for learning block-structured dictionaries for block-sparse signal representations is proposed in this paper. It is obtained by solving a sequence of penalized low rank matrix approximation problems where the l(1),(2)-norm is introduced as a penalty promoting block sparsity and then using a block coordinate descent approach to estimate the unknowns. The proposed algorithm has the advantage of involving simple closed form solutions for both, the sparse coding and dictionary update stages. In particular, the sparse coding stage involves a simple shrinkage operation related to soft thresholding and it is related to the uniformly most powerful invariant testing procedure. Experimental results showing the improved efficacy and significant gain in computational time, offered by the proposed algorithm over the usual K singular value decomposition block extension are presented.
机译:字典学习算法已成功应用于许多信号和图像处理问题。然而,在一些应用中,观察到的信号可以进一步具有使得能够进行块稀疏信号表示的多子空间结构。针对这种情况,本文提出了一种新的算法,用于学习用于块稀疏信号表示的块结构字典。它是通过解决一系列惩罚性低秩矩阵逼近问题而获得的,其中引入l(1),(2)范数作为惩罚促进块稀疏性,然后使用块坐标下降法估算未知数。所提出的算法的优点在于,对于稀疏编码阶段和字典更新阶段都涉及简单的封闭形式解决方案。特别地,稀疏编码阶段涉及与软阈值相关的简单收缩操作,并且与统一最有效的不变测试程序有关。实验结果表明,与常规的K奇异值分解块扩展相比,所提算法提供了改进的功效和显着的计算时间增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号