首页> 外文期刊>Computational Imaging, IEEE Transactions on >Joint SAR Imaging and Multi-Feature Decomposition From 2-D Under-Sampled Data Via Low-Rankness Plus Sparsity Priors
【24h】

Joint SAR Imaging and Multi-Feature Decomposition From 2-D Under-Sampled Data Via Low-Rankness Plus Sparsity Priors

机译:通过低秩加稀疏先验从二维欠采样数据中进行联合SAR成像和多特征分解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a multi-feature decomposition approach to the problem of synthetic aperture radar (SAR) image reconstruction from under-sampled data in both range and azimuth directions. Conventional SAR image formation methods may produce images that are not appropriate for interpretation tasks such as segmentation and automatic target recognition. We deal with this problem using an efficient joint SAR image reconstruction-decomposition framework in which features of interest are enhanced and decomposed simultaneously. Unlike conventional methods, our proposed framework provides multiple segment images along with a composite SAR image. In the composite image not only the resolution is improved but also both the speckle and sidelobe artifacts are reduced. In the decomposed images, different components can be roughly attributed to different potential segments, which facilitate the subsequent interpretation tasks such as shape-based recognition or region segmentation. Moreover, these decomposed images contain easier-to-segment regions rather than taking the entire scene for segmenting the feature of interest. By formulating the SAR image reconstruction as a low-rank plus multi-feature decomposition problem, the optimization problem is solved based on the alternating direction method of multipliers. Using combined dictionaries, multiple transform-sparse components are represented efficiently by a linear combination of multiple sparsifying matrices associated with the features of interest in the scene. Our proposed method jointly reconstructs and decomposes different pieces of the imaged SAR scene, in particular the low-rank part of the background and sparsely represented features of interest, from under-sampled observed data. Using extensive experimental results we show the effectiveness of the proposed method on both synthetic and real SAR images.
机译:本文针对距离和方位两个方向上的欠采样数据,针对合成孔径雷达(SAR)图像重建问题,提出了一种多特征分解方法。常规SAR图像形成方法可能会产生不适合于诸如分割和自动目标识别之类的解释任务的图像。我们使用有效的联合SAR图像重建-分解框架来处理此问题,其中感兴趣的特征会同时增强和分解。与传统方法不同,我们提出的框架可提供多个片段图像以及合成SAR图像。在合成图像中,不仅提高了分辨率,而且减少了斑点和旁瓣伪影。在分解后的图像中,不同的分量可以大致归因于不同的潜在片段,这有助于后续的解释任务,例如基于形状的识别或区域分割。而且,这些分解图像包含易于分割的区域,而不是采用整个场景来分割感兴趣的特征。通过将SAR图像重建公式化为低秩加多特征分解问题,基于乘法器交替方向方法解决了优化问题。使用组合字典,通过与场景中感兴趣的特征相关联的多个稀疏矩阵的线性组合,可以有效地表示多个变换稀疏分量。我们提出的方法可以从欠采样的观测数据中联合重建和分解成像的SAR场景的不同部分,尤其是背景的低阶部分和稀疏表示的感兴趣特征。使用广泛的实验结果,我们证明了该方法在合成和真实SAR图像上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号