首页> 外文期刊>Pattern recognition letters >Multi-task image set classification via joint representation with class-level sparsity and intra-task low-rankness
【24h】

Multi-task image set classification via joint representation with class-level sparsity and intra-task low-rankness

机译:多任务映像通过关节表示与类级稀疏性和任务内的低排名进行分类

获取原文
获取原文并翻译 | 示例

摘要

Image set classification has recently attracted great attention due to its widespread applications in computer vision and pattern recognition. The great challenges lie in effectively and efficiently measuring the similarity among image sets with high inter-class ambiguity and large intra-class variability. In this paper, we propose a joint representation based approach to image set classification, in which class-level sparse and globally low rank constraints are imposed on the representation coefficients to embody inter-set discrimination and intra-set commonality respectively. Furthermore, sometimes the small size of image sets or improper usage of a single kind of features causes useful information limited and lacking in discriminability. To address this problem, we extend the traditional image set classification to a multi-task version, i.e., modify the proposed model to incorporate multiple kinds of features. Fortunately, on the total multi-task representation coefficients, both the total class-level sparsity and the intra-task low-rankness constraints still apply. The proposed method is optimized as a non-smooth convex optimization problem by employing an alternating optimization technique. Experiments on five public datasets demonstrate that the proposed method surpasses existing joint representation models with various regularizations for image set classification and compares favorably with other state-of-the-art methods. (c) 2018 Elsevier B.V. All rights reserved.
机译:由于计算机视觉和模式识别的广泛应用,图像集分类最近引起了极大的关注。巨大的挑战在于有效,有效地测量图像集中的相似性,具有高级间歧义和较大的级别变异性。在本文中,我们提出了一种基于图像集分类的联合表示的方法,其中施加在表示系数上以分别对表示间辨别和内部常见的表示系数施加等级稀疏和全局低秩约束。此外,有时,图像集的小尺寸或单个特征的使用不当使用导致有用的信息有限并缺乏可辨别性。为了解决这个问题,我们将传统的图像设置分类扩展到多任务版本,即修改所提出的模型以包含多种功能。幸运的是,在总多任务表示系数上,仍然适用于总类级别稀疏性和任务内的低排名约束。该方法通过采用交替的优化技术作为非平滑凸优化问题进行了优化。五个公共数据集上的实验表明,该方法超越了现有的联合表示模型,具有各种规范化的图像集分类,并与其他最先进的方法相比。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号