首页> 外文期刊>Computational Geosciences >Channelized reservoir estimation using a low-dimensional parameterization based on high-order singular value decomposition
【24h】

Channelized reservoir estimation using a low-dimensional parameterization based on high-order singular value decomposition

机译:基于高阶奇异值分解的低维参数化渠化储层估算

获取原文
获取原文并翻译 | 示例

摘要

Prior to the estimation process of channelized reservoirs, in the context of any Assisted History Matching method, the parameterization of facies field is a necessary task. The parameterization of the facies field consists of defining a numerical field (parameter field) on the reservoir domain so that, using a projection function, we are able to recover the facies field from the values of parameter field. One of the most important issues encountered is the loss of the multipoint geostatistical properties in the updates (channel continuity). In this study, we start from an initial (global) parameterization of the channelized field and infer from it a low-dimensional parameterization obtained after a high-order singular value decomposition of a tensor built with the parameter fields. We decompose the parameter field as a linear combination of some basis functions with coefficients. The decomposition is followed by a truncation so that we keep the relevant information from the channel continuity perspective, but with a small number of coefficients. The coefficients will represent the low-dimensional parameterization and are further introduced in the estimation process of facies field, using the Ensemble Smoother with Multiple Data Assimilations (ES-MDA). For a fair assessment of the parameterization, we perform a comparison of the results with those obtained by applying the traditional truncated singular value decomposition and the global parameterization. In addition, we compare the parameterization with a low-dimensional parameterization defined with the PCA decomposition. The comparison is done from the perspective of multipoint geostatistical characteristics of the updates and predictions. We show that the new parameterization is able to better keep the multipoint geostatistical structure in the updates than the other parameterizations, while the prediction capabilities are the same.
机译:在通道化储层的估算过程之前,在任何“辅助历史匹配”方法的背景下,相场的参数化都是一项必要的任务。相场的参数化包括在储层域上定义一个数值场(参数场),以便使用投影函数,我们能够从参数场的值中恢复相场。遇到的最重要的问题之一是在更新中丢失了多点地统计属性(通道连续性)。在这项研究中,我们从信道化字段的初始(全局)参数化开始,并据此推断出在用参数字段构建的张量的高阶奇异值分解后获得的低维参数化。我们将参数字段分解为一些基本函数与系数的线性组合。分解之后是截断,因此从通道连续性的角度来看,我们保留了相关信息,但系数数量很少。系数将代表低维参数化,并使用具有多个数据同化的集成平滑器(ES-MDA)在相域的估计过程中进一步引入。为了公平评估参数,我们将结果与通过应用传统的截断奇异值分解和全局参数化获得的结果进行比较。此外,我们将参数化与PCA分解定义的低维参数化进行了比较。比较是从更新和预测的多点地统计特征的角度进行的。我们表明,与其他参数化方法相比,新的参数化方法能够更好地保持更新中的多点地统计结构,而预测功能却相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号