首页> 外文期刊>Computational Geosciences >Hybrid hyperspectral image compression technique for non-iterative factorized tensor decomposition and principal component analysis: application for NASA's AVIRIS data
【24h】

Hybrid hyperspectral image compression technique for non-iterative factorized tensor decomposition and principal component analysis: application for NASA's AVIRIS data

机译:用于非迭代分解张量分解和主成分分析的混合高光谱图像压缩技术:在NASA AVIRIS数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing data has shown tremendous potential for applications in various fields like land use mapping and detection, geologic mapping, water resource applications, wetland mapping, urban and regional planning, environment inventory, natural disaster assessment, archaeological applications, and others. Every day, thousands of gigabytes of memory are involved in capturing the hyperspectral remote sensing datasets. The compelling information present in these hyperspectral images (HSIs) is very minimal due to redundancy. Spatial and spectral correlations monopolize the acquired HSI data sets. Therefore, an algorithm that exploits these correlations and compresses the HSI tensors is proposed in this paper. First, the acquired HSI image (reflectance data) is subjected to the removal of geometric and radiometric errors. Second, spectral bands of interest affiliated to the underlying application are exclusively processed for principal component analysis (PCA). Results of this PCA are scrutinized to identify the absolute dependent components. Further, these components are exposed to a non-iterative factorized compression technique. As a result, HSI 3D tensors are disintegrated into 1D tensors. This tensor breakdown leads to a compression ratio as high as 3747:1 while the total encoding time observed is 332 s and RMSE is as low as 0.0017. Later, the original HSI is reconstructed back by the product of decomposed individual tensors and its PSNR is 53.03 dB. The proposed compression method targets the tucker decomposition-based HSI compression technique which is computationally complex and time consuming, and hence, a breakthrough is achieved with the technique introduced.
机译:遥感数据显示了在各个领域中的巨大应用潜力,例如土地利用制图和探测,地质制图,水资源应用,湿地测绘,城市和区域规划,环境清单,自然灾害评估,考古应用等。每天,捕获高光谱遥感数据集都需要数千GB的内存。由于冗余,存在于这些高光谱图像(HSI)中的引人注目的信息非常少。空间和频谱相关性垄断了所获取的HSI数据集。因此,本文提出了一种利用这些相关性并压缩HSI张量的算法。首先,对获取的HSI图像(反射率数据)进行几何和辐射误差的去除。其次,与基础应用程序关联的感兴趣的光谱带仅进行主成分分析(PCA)处理。仔细检查该PCA的结果以识别绝对依赖的组件。此外,这些组件将接受非迭代的因式压缩技术。结果,HSI 3D张量分解为1D张量。该张量分解导致压缩比高达3747:1,而观察到的总编码时间为332 s,RMSE仅为0.0017。后来,原始的HSI由分解后的单个张量的乘积重建回来,其PSNR为53.03 dB。所提出的压缩方法针对的是基于塔克分解的HSI压缩技术,该技术计算复杂且耗时,因此,引入的技术实现了突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号