首页> 外文期刊>Computational Geosciences >A flow-based pattern recognition algorithm for rapid quantification of geologic uncertainty
【24h】

A flow-based pattern recognition algorithm for rapid quantification of geologic uncertainty

机译:一种基于流的模式识别算法,可快速量化地质不确定性

获取原文
获取原文并翻译 | 示例

摘要

Geologic uncertainties and limited well data often render recovery forecasting a difficult undertaking in typical appraisal and early development settings. Recent advances in geologic modeling algorithms permit automation of the model generation process via macros and geostatistical tools. This allows rapid construction of multiple alternative geologic realizations. Despite the advances in geologic modeling, computation of the reservoir dynamic response via full-physics reservoir simulation remains a computationally expensive task. Therefore, only a few of the many probable realizations are simulated in practice. Experimental design techniques typically focus on a few discrete geologic realizations as they are inherently more suitable for continuous engineering parameters and can only crudely approximate the impact of geology. A flow-based pattern recognition algorithm (FPRA) has been developed for quantifying the forecast uncertainty as an alternative. The proposed algorithm relies on the rapid characterization of the geologic uncertainty space represented by an ensemble of sufficiently diverse static model realizations. FPRA characterizes the geologic uncertainty space by calculating connectivity distances, which quantify how different each individual realization is from all others in terms of recovery response.rnFast streamline simulations are employed in evaluating these distances. By applying pattern recognition techniques to connectivity distances, a few representative realizations are identified within the model ensemble for full-physics simulation. In turn, the recovery factor probability distribution is derived from these intelligently selected simulation runs. Here, FPRA is tested on an example case where the objective is to accurately compute the recovery factor statistics as a function of geologic uncertainty in a channelized turbidite reservoir. Recovery factor cumulative distribution functions computed by FPRA compare well to the one computed via exhaustive full-physics simulations.
机译:地质上的不确定性和有限的井眼数据通常使采收率预测在典型的评估和早期开发环境中难以开展。地质建模算法的最新进展允许通过宏和地统计工具自动化模型生成过程。这允许快速构造多个替代地质实现。尽管地质建模取得了进步,但是通过全物理储层模拟来计算储层动态响应仍然是一项计算量巨大的任务。因此,在实践中仅模拟了许多可能的实现中的几个。实验设计技术通常专注于一些离散的地质实现,因为它们本质上更适合于连续的工程参数,并且只能粗略地估算地质的影响。已经开发了基于流的模式识别算法(FPRA),用于量化预测不确定性。所提出的算法依靠对地质不确定性空间的快速刻画,该刻画空间由足够多样的静态模型实现的整体表示。 FPRA通过计算连通性距离来表征地质不确定性空间,该连通性距离量化了每个实现与其他实现之间在恢复响应方面的差异。在评估这些距离时采用了快速流线模拟。通过将模式识别技术应用于连接距离,可以在模型集合中识别出一些具有代表性的实现,以进行全物理模拟。反过来,从这些智能选择的模拟运行中可以得出恢复因子概率分布。在此,FPRA是在一个示例案例中进行测试的,该案例的目的是准确地计算出通道化浊积岩储层中随地质不确定性而变化的采收率统计数据。 FPRA计算的恢复因子累积分布函数与通过详尽的全物理模拟计算的恢复因子具有很好的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号