首页> 外文期刊>Computational Geosciences >Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part II: numerical scheme and numerical results
【24h】

Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part II: numerical scheme and numerical results

机译:多孔介质中两相两组分流动的全耦合广义混合混合有限元逼近。第二部分:数值格式和数值结果

获取原文
获取原文并翻译 | 示例

摘要

We consider the modeling and simulation of compositional two-phase flow in a porous medium, where one phase is allowed to vanish or appear. The modeling of Marchand et al. (in review) leads to a nonlinear system of two conservation equations. Each conservation equation contains several nonlinear diffusion terms, which in general cannot be written as a function of the gradients of the two principal unknowns. Also the diffusion coefficients are not necessarily explicit local functions of them. For the generalised mixed finite elements approximation, Lagrange multipliers associated to each principal unknown are introduced, the sum of the diffusive fluxes of each component is explicitly eliminated and the static condensation leads to a "global" nonlinear system of equations only in the Lagrange multipliers also including complementarity conditions to cope with vanishing or appearing phases. After time discretisation, this system can be solved at each time step using a semi-smooth Newton method. The static condensation involves "local" nonlinear systems of equations associated to each element, solved also by a semismooth Newton method. The algorithm is successfully applied to 1D and 2D examples of water-hydrogen flow involving gas phase appearance and disappearance.
机译:我们考虑在多孔介质中组成两相流的建模和仿真,其中一相被允许消失或出现。 Marchand等人的建模。 (在评论中)导致了两个守恒方程的非线性系统。每个守恒方程包含几个非线性扩散项,通常不能将其写成两个主要未知数的梯度的函数。而且,扩散系数不一定是它们的显式局部函数。对于广义混合有限元逼近,引入了与每个主要未知数关联的拉格朗日乘子,显着消除了每个分量的扩散通量之和,并且静态凝聚仅在拉格朗日乘子中也导致了方程的“全局”非线性系统包括互补条件以应对消失或出现的阶段。时间离散后,可以使用半光滑的牛顿法在每个时间步求解该系统。静态凝聚涉及与每个元素关联的方程的“局部”非线性系统,也可以通过半光滑的牛顿法求解。该算法已成功地应用于涉及气相出现和消失的水-氢流的一维和二维示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号