首页> 外文期刊>Computational complexity >EVERY LINEAR THRESHOLD FUNCTION HAS A LOW-WEIGHT APPROXIMATOR
【24h】

EVERY LINEAR THRESHOLD FUNCTION HAS A LOW-WEIGHT APPROXIMATOR

机译:每个线性阈值功能都有一个轻量级的近似器

获取原文
获取原文并翻译 | 示例

摘要

Given any linear threshold function f on n Boolean variables, we construct a linear threshold function g which disagrees with f on at most an ε fraction of inputs and has integer weights each of magnitude at most n~(1/2) · 2~(O(1/ε~2)). We show that the construction is optimal in terms of its dependence on n by proving a lower bound of Ω(n~(1/2)) on the weights required to approximate a particular linear threshold function. We give two applications. The first is a deterministic algorithm for approximately counting the fraction of satisfying assignments to an instance of the zero-one knapsack problem to within an additive ±ε. The algorithm runs in time polynomial in n (but exponential in 1/ε~2). In our second application, we show that any linear threshold function f is specified to within error ε by estimates of its Chow parameters (degree 0 and 1 Fourier coefficients) which are accurate to within an additive ±1/(n • 2~(O(1/ε~2))). This is the first such accuracy bound which is inverse polynomial in n, and gives the first polynomial bound (in terms of n) on the number of examples required for learning linear threshold functions in the "restricted focus of attention" framework.
机译:给定n个布尔变量上的任何线性阈值函数f,我们构造一个线性阈值函数g,该线性阈值函数g在输入的一个ε部分中与f不一致,并且具有最大为n〜(1/2)·2〜( O(1 /ε〜2))。我们通过证明在近似特定线性阈值函数所需权重的下限Ω(n〜(1/2))上证明了构造对n的依赖关系是最佳的。我们给出两个申请。第一种是确定性算法,用于将零一背包问题实例的满意分配的分数近似计入加法±ε内。该算法在n的时间多项式中运行(但在1 /ε〜2中为指数)。在我们的第二个应用中,我们表明,通过估计其Chow参数(度数0和1傅里叶系数),可以将任何线性阈值函数f指定为误差ε,该参数精确到加法器±1 /(n•2〜(O (1 /ε〜2))。这是第一个这样的精度范围,它在n中是多项式的倒数,并给出了在“受限关注焦点”框架中学习线性阈值函数所需的示例数的第一个多项式范围(以n表示)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号