首页> 外文期刊>Computational complexity >HOW LOW CAN APPROXIMATE DEGREE AND QUANTUM QUERY COMPLEXITY BE FOR TOTAL BOOLEAN FUNCTIONS?
【24h】

HOW LOW CAN APPROXIMATE DEGREE AND QUANTUM QUERY COMPLEXITY BE FOR TOTAL BOOLEAN FUNCTIONS?

机译:总布尔函数的近似度和量子查询复杂度有多低?

获取原文
获取原文并翻译 | 示例

摘要

It has long been known that any Boolean function that depends on n input variables has both degree and exact quantum query complexity of Ω(log n), and that this bound is achieved for some functions. In this paper, we study the case of approximate degree and bounded-error quantum query complexity. We show that for these measures, the correct lower bound is Ω (log n/log log n), and we exhibit quantum algorithms for two functions where this bound is achieved.
机译:长期以来,任何依赖于n个输入变量的布尔函数都具有Ω(log n)的度数和精确的量子查询复杂度,并且对于某些函数可以实现此界限。在本文中,我们研究了近似度和有界误差量子查询复杂度的情况。我们表明,对于这些度量,正确的下界是Ω(log n / log log n),并且我们展示了实现该界限的两个函数的量子算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号