首页> 外文期刊>Computational complexity >Quantum Query Complexity of Almost All Functions with Fixed On-set Size
【24h】

Quantum Query Complexity of Almost All Functions with Fixed On-set Size

机译:固定大小的几乎所有函数的量子查询复杂性

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the quantum query complexity of almost all functions in the set of -variable Boolean functions with on-set size , where the on-set size is the number of inputs on which the function is true. The main result is that, for all functions in except its polynomially small fraction, the quantum query complexity is Theta (logM/c+log N- log log M + root N) for a constant . This is quite different from the quantum query complexity of the hardest function in F-N,F-M : Theta (root N logM/c+log N- log log M + root N) . In contrast, almost all functions in have the same randomized query complexity as the hardest one, up to a constant factor.
机译:本文考虑具有set-set大小的-variable布尔函数集合中几乎所有函数的量子查询复杂性,其中on-set大小是函数为真的输入的数量。主要结果是,对于除多项式小部分外的所有函数,其常数的量子查询复杂度为Theta(logM / c + log N- log log M + root N)。这与F-N,F-M中最困难的函数的量子查询复杂性完全不同:Theta(根N logM / c + log N-对数log M +根N)。相比之下,几乎所有函数都具有与最困难函数相同的随机查询复杂度,并且直到一个恒定因子为止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号