首页> 外文期刊>Computational & Mathematical Organization Theory >A curved exponential family model for complex networks
【24h】

A curved exponential family model for complex networks

机译:复杂网络的弯曲指数族模型

获取原文
获取原文并翻译 | 示例

摘要

Networks are being increasingly used to represent relational data. As the patterns of relations tends to be complex, many probabilistic models have been proposed to capture the structural properties of the process that generated the networks. Two features of network phenomena not captured by the simplest models is the variation in the number of relations individual entities have and the clustering of their relations. In this paper we present a statistical model within the curved exponential family class that can represent both arbitrary degree distributions and an average clustering coefficient. We present two tunable parameterizations of the model and give their interpretation. We also present a Markov Chain Monte Carlo (MCMC) algorithm that can be used to generate networks from this model.
机译:网络越来越多地用于表示关系数据。由于关系的模式趋于复杂,因此提出了许多概率模型来捕获生成网络的过程的结构特性。没有用最简单的模型捕获的网络现象的两个特征是各个实体之间关系数量的变化以及它们之间关系的聚类。在本文中,我们提出了一个弯曲的指数族类中的统计模型,该模型可以表示任意程度的分布和平均聚类系数。我们介绍了模型的两个可调参数化并给出了解释。我们还提出了一种马尔可夫链蒙特卡洛(MCMC)算法,该算法可用于从该模型生成网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号