首页> 外文期刊>Composites Science and Technology >Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes
【24h】

Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes

机译:取向碳纳米管增强的机织复合材料层合板中的多尺度层间断裂机理

获取原文
获取原文并翻译 | 示例
           

摘要

Aligned nanoscale fibers have been shown to provide inter and intralaminar reinforcement of fiber-reinforced polymer composites. In one hierarchical architecture, aligned carbon nanotubes (CNTs) grown on advanced microfibers in a woven ply creates a 'fuzzy fiber' reinforced plastic (FFRP) laminate. Here, the mechanisms of mode Ⅰ fracture toughness enhancement for such laminates are elucidated experimentally by varying the type of epoxy and aligned CNT length. Reinforcement effectiveness is found to vary from reduced initiation toughness to over 100% increase in steady-state fracture toughness, depending upon the interlaminar fracture mechanisms. Fracture-surface morphology investigations reveal that interlaminar toughness enhancement is significantly less for an aerospace infusion resin than that for a much tougher hand lay-up marine epoxy. Long (~20 micron) aligned CNTs add significant toughness in steady state (>1 kJ/m~2 increase for marine epoxy) via CNT pullout and by driving the crack through tortuous paths around and through microfiber bundles/tows, whereas shorter CNTs produce less toughening (or even reduced toughness in aerospace epoxy), which is attributed to increased microfiber-matrix cohesive failure. These findings reveal the multi-scale nature of the aligned-CNT reinforced composite ply interface, and the mechanisms at work at the micro and nanoscales that influence the macroscopic behavior. These new insights provide impetus for using aligned CNTs to tailor microfiber polymer composites by adjusting microfiber orientation, steering cracks through tortuous paths, and maximizing fracture surface area through both microfiber and nanofiber pullout.
机译:取向的纳米级纤维已经显示出可提供纤维增强的聚合物复合材料的层间和层内增强。在一种分层体系结构中,在编织层中的高级超细纤维上生长的对齐碳纳米管(CNT)形成了“模糊纤维”增强塑料(FFRP)层压板。在此,通过改变环氧树脂的类型和对齐的CNT长度,通过实验阐明了此类层压板的Ⅰ型断裂韧性提高的机理。根据层间断裂机理,发现增强效果从降低的初始韧性到稳态断裂韧性的增加超过100%不等。断裂表面的形态研究表明,航空航天输注树脂的层间韧性提高明显小于手工叠加的船用环氧树脂的层间韧性提高。长(〜20微米)排列的碳纳米管通过拉出碳纳米管并通过绕过微纤维束/丝束的曲折路径驱动裂纹,从而在稳态下显着增加了韧性(对于船用环氧树脂,增加了> 1 kJ / m〜2)。较少的增韧(或什至降低了航空环氧树脂的韧性),这归因于超细纤维基体的内聚破坏增加。这些发现揭示了对齐的CNT增强复合层界面的多尺度性质,以及影响宏观行为的微观和纳米尺度上的作用机理。这些新见解为使用对齐的CNT通过调整微纤维的方向,通过曲折路径控制裂纹以及通过微纤维和纳米纤维拉出最大化断裂表面积提供了动力,以定制微纤维聚合物复合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号