首页> 外文OA文献 >Interlaminar Fracture Toughness of Laminated Woven Composites Reinforced with Aligned Nanoscale Fibers: Mechanisms at the Macro, Micro, and Nano Scales
【2h】

Interlaminar Fracture Toughness of Laminated Woven Composites Reinforced with Aligned Nanoscale Fibers: Mechanisms at the Macro, Micro, and Nano Scales

机译:对齐纳米纤维增强层压编织复合材料的层间断裂韧性:宏观,微观和纳米尺度的机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several hybrid architectures with aligned nanoscale fibers have been shown to provide inter- and intra-laminar reinforcement of fiber reinforced polymer composites. In one architecture, aligned carbon nanotubes (CNTs) grown on advanced fibers in a woven ply creates a ‘fuzzy fiber’ reinforced plastic (FFRP) laminate. Here the mechanisms of Mode I fracture toughness enhancement are elucidated by varying the type of epoxy and reinforcing CNT length experimentally. Reinforcement effects are shown to vary from reduced initiation toughness to more than 100% increase in steady-state fracture toughness, depending upon the multi-scale interlaminar fracture mechanisms. Fracture-surface morphology investigations using several techniques reveal that interlaminar toughness enhancement for an aerospace infusion resin is significantly less than that for a hand lay-up marine epoxy. Long (~20 micron) aligned CNTs toughens significantly (> 1 kJ/m[superscript 2] increase for marine epoxy) by driving the crack through tortuous paths around and through tows, whereas shorter CNTs produce less toughening (or even reduced toughness in aerospace epoxy), which is attributed to shorter pullout lengths and grown-CNT morphology differences. These findings reveal for the first time the multiscale nature of the composite ply interface, and the mechanisms at work at the chemical, nano, and micro scales that influence the macroscopic behavior. Extensions and future work are discussed, including preliminary results using the multifunctional attributes of the nanoengineered composite for structural health monitoring (SHM) concomitant with interlaminar fracture testing.
机译:已显示具有对齐的纳米级纤维的几种混合结构可提供纤维增强聚合物复合材料的层间和层内增强。在一种架构中,在编织层中的先进纤维上生长的对齐的碳纳米管(CNT)形成了“模糊纤维”增强塑料(FFRP)层压板。在这里,通过改变环氧树脂的类型并通过实验增强CNT的长度来阐明I型断裂韧性增强的机理。据显示,增强作用的范围从降低的初始韧性到稳态断裂韧性的100%以上的增加,取决于多尺度层间断裂机理。使用多种技术进行的断裂表面形态研究表明,航空航天灌注树脂的层间韧性提高幅度明显小于手糊型船用环氧树脂的层间韧性提高幅度。长(〜20微米)排列的碳纳米管通过沿着裂纹绕过和穿过丝束的弯曲路径驱动裂纹而显着增韧(对于船用环氧树脂,> 1 kJ / m [上标2]增加),而较短的碳纳米管产生的增韧程度较小(甚至在航空航天中降低了韧性)环氧树脂),这归因于较短的拔出长度和生长的CNT形态差异。这些发现首次揭示了复合层界面的多尺度性质,以及影响宏观行为的化学,纳米和微米尺度的作用机理。讨论了扩展和未来的工作,包括使用纳米工程复合材料的多功能属性进行结构健康监测(SHM)以及层间断裂测试的初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号