首页> 外文学位 >Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube (VACNT) reinforced woven fiber-glass composites.
【24h】

Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube (VACNT) reinforced woven fiber-glass composites.

机译:垂直排列的碳纳米管(VACNT)增强的机织玻璃纤维复合材料的动态力学分析和高应变率能量吸收特性。

获取原文
获取原文并翻译 | 示例

摘要

In previous research (Blast and Impact Dynamics Lab, University of Mississippi), it was found that Vertically Aligned Carbon Nanotube (VACNT) forests grown on Silicon (Si) wafer substrate exhibited significantly higher flexural stiffness, damping and specific energy absorption. In the work reported here, the dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites consisting of 3 layers of VACNT forests grown on woven fiber-glass and embedded within 10 layers of woven fiber-glass; with polyester (FG/PE/VACNT) and polyurethane (FG/PU/VACNT) resin systems, are investigated. Dynamic Mechanical Analysis (DMA) was conducted for evaluating the dynamic mechanical behavior, and compressive Split Hopkinson Pressure Bar (SHPB) tests were performed to characterize the energy absorption.;Initially, 10 layer woven fiber-glass with polyester (FG/PE), polyurethane (FG/PU), and epoxy (FG/Epoxy) based resin systems were characterized; to find suitable candidate materials for embedding with VACNT forest layers. Among these, FG/PE and FG/PU, showing comparatively lower damping and higher compressive strength, were chosen for embedding with 3 layers of VACNT grown on woven fiber-glass with polyester (FG/PE/VACNT) and polyurethane (FG/PU/VACNT) resins. The dynamic mechanical behavior of VACNT forest reinforced composites, FG/PE/VACNT and FG/PU/VACNT, were compared with the baseline composites, FG/PE and PF/PU.;A Dynamic Mechanical Analyzer was used for obtaining the mechanical properties such as storage modulus (E', flexural stiffness), loss modulus (E'', energy dissipation), damping loss factor (Tan delta, inherent damping), and glass transition temperature (Tg). It was found that FG/PE/VACNT exhibited a significantly lower flexural stiffness at ambient temperature along with higher damping loss factor over the investigated temperature range, compared to the baseline material FG/PE. For FG/PU/VACNT, a significant increase in flexural stiffness at ambient temperature along with a lower damping loss factor was observed with respect to the baseline material, FG/PU.;A Split Hopkinson Pressure Bar was used to obtain the specific energy absorption and compressive strength under high strain-rate loading. It was found that the specific energy absorption increased with VACNT layers embedded in both FG/PE and FG/PU. The compressive strength also increased by about 30% with the addition of VACNT forest layers in FG/PU; however, it did not show an improvement for FG/PE.
机译:在先前的研究(密西西比大学爆炸与冲击动力学实验室)中,发现在硅(Si)晶片基板上生长的垂直排列的碳纳米管(VACNT)林表现出明显更高的抗弯刚度,阻尼和比能量吸收。在这里报告的工作中,纳米增强的功能梯度复合材料的动态力学性能和能量吸收特性包括三层VACNT森林,它们生长在机织玻璃纤维上并嵌入10层机织玻璃纤维中;研究了用聚酯(FG / PE / VACNT)和聚氨酯(FG / PU / VACNT)树脂体系。进行动态力学分析(DMA)来评估动态力学行为,并进行压缩分流霍普金森压力棒(SHPB)测试以表征能量吸收。首先,采用聚酯的10层机织玻璃纤维(FG / PE),对聚氨酯(FG / PU)和环氧(FG / Epoxy)基树脂体系进行了表征;寻找适合嵌入VACNT林层的候选材料。其中,选择FG / PE和FG / PU表现出较低的阻尼和较高的抗压强度,以嵌入在聚酯(FG / PE / VACNT)和聚氨酯(FG / PU)的机织玻璃纤维上生长的三层VACNT进行嵌入。 / VACNT)树脂。将VACNT森林增强复合材料FG / PE / VACNT和FG / PU / VACNT的动态力学性能与基线复合材料FG / PE和PF / PU进行了比较。作为储能模量(E',抗弯刚度),损耗模量(E'',能量耗散),阻尼损耗因数(Tan delta,固有阻尼)和玻璃化转变温度(Tg)。已发现,与基线材料FG / PE相比,FG / PE / VACNT在所研究的温度范围内在环境温度下表现出明显更低的挠曲刚度以及更高的阻尼损耗因子。对于FG / PU / VACNT,相对于基准材料FG / PU,观察到在环境温度下弯曲刚度显着增加,并且阻尼损耗因子降低。;使用了霍普金森分流式压力棒来获得比能量吸收高应变率载荷下的抗压强度和抗压强度。已经发现,嵌入在FG / PE和FG / PU中的VACNT层的比能量吸收都增加了。在FG / PU中添加VACNT林层后,抗压强度也提高了约30%。但是,它对于FG / PE并没有显示出改善。

著录项

  • 作者

    Kim, Kiyun.;

  • 作者单位

    The University of Mississippi.;

  • 授予单位 The University of Mississippi.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号