首页> 外文学位 >Applying Vertically Aligned Carbon Nanotubes in Energy Harvesting and Energy Storage
【24h】

Applying Vertically Aligned Carbon Nanotubes in Energy Harvesting and Energy Storage

机译:垂直排列的碳纳米管在能量收集和能量存储中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work has been a scientific inquisition into the potential of carbon nanotubes, fabricated in a vertically aligned configuration, for their application to solving pressing energy problems. This dissertation is introduced by providing a background to energy storage and generation as well as the various major equipment and techniques used throughout the scientific inquisition. The generic method of vertically aligned carbon nanotubes (VACNT) growth is then presented. By using a combination of recipes previously described in literature, an easy to replicate method of growing carbon nanotubes is developed with demonstrated success on different substates. The different conditions required to facilitate efficiency in the VACNT growth are highlighted. The properties of the as-grown VACNT forest are also studied and presented. Based on the recipe used, the VACNT are categorized as multiwalled and the number of walls is confirmed to be about 15 walls using transmission electron microscopy (TEM). Their graphitic nature is confirmed using thermogravimetric analysis (TGA). The surface area characterization is done using the Brunauer-Emmett-Teller (BET) method and weight-gain method.;The first part of this dissertation deals with the application of the VACNT electrodes fabricated for the harvesting of mechanical energy using the triboelectric nanogenerator (TENG) technology. Here, energy is harvested from mechanical systems using both polytetrafluoroethylene (PTFE) and polyethylene (PET) counter electrodes to confirm the applicability of VACNT electrodes for this purpose. A mechanism for the electron motion is proposed based on the already identified dielectric-metal TENG pairing. Furthermore, the usefulness of this technology is demonstrated further by charging a 0.47microF capacitor to 4.5V in one minute using the VACNT-PTFE TENG.;The second part of this dissertation deals with the application of VACNT electrodes in energy storage using supercapacitors. Firstly, the performance of VACNT electrodes by themselves is studied in both 3-electrode and 2-electrode systems as well as in both aqueous and organic electrolytes. Due to the larger electrochemical window possible, better performance is obtained from the system using VACNT electrodes in organic electrolyte than is obtained in aqueous electrolyte. Safety and cost limitations of the organic electrolyte forced further research into the improvement of performance in aqueous electrolyte. The solution found is to incorporate another mechanism of supercapacitive energy storage besides the formation of an electric double layer on the VACNT. This involved the uniform deposition of nickel cobaltite (a well known faradaic capacitive material) on the VACNT surface as well as using freeze-drying to preserve the vertical alignment structure. All the considerations required to achieve these goals are expressed and discussed. Overall, a comparable energy density is obtained from the aqueous electrolyte after faradaic capacitive modification of the VACNT electrode.;Chapters 3 and 5 of this dissertation incorporate material in peer-reviewed journal papers published by the author.
机译:这项工作是对垂直排列配置的碳纳米管在解决紧迫的能源问题中的应用的科学探索。通过提供能量存储和发电的背景以及整个科学调查中使用的各种主要设备和技术来介绍本论文。然后介绍了垂直排列的碳纳米管(VACNT)生长的通用方法。通过使用先前在文献中描述的配方组合,开发了一种易于复制的生长碳纳米管的方法,并在不同的亚状态获得了成功。着重说明了促进VACNT增长效率所需的不同条件。还研究并介绍了成年的VACNT森林的性质。根据所使用的配方,将VACNT归类为多壁,并使用透射电子显微镜(TEM)确认壁数约为15壁。使用热重分析(TGA)证实了它们的石墨性质。使用Brunauer-Emmett-Teller(BET)方法和重量增加方法进行表面积表征。;本论文的第一部分涉及使用摩擦电纳米发生器制备的用于收集机械能的VACNT电极的应用(腾)技术。在此,使用聚对四氟乙烯(PTFE)和聚乙烯(PET)对电极同时从机械系统中收集能量,以确认VACNT电极可用于此目的。基于已经识别的电介质-金属TENG对,提出了一种电子运动的机制。此外,通过使用VACNT-PTFE TENG在0.4分钟内将0.47microF电容器充电至4.5V,进一步证明了该技术的实用性。本论文的第二部分涉及VACNT电极在使用超级电容器的储能中的应用。首先,在3电极和2电极系统以及水性和有机电解质中都研究了VACNT电极的性能。由于可能的更大的电化学窗口,因此在有机电解质中使用VACNT电极的系统所获得的性能要比在水性电解质中获得的系统更好。有机电解质的安全性和成本限制迫使人们进一步研究改善水性电解质的性能。找到的解决方案是除了在VACNT上形成双电层以外,还包含另一种超级电容储能机制。这涉及到镍钴矿(一种众所周知的法拉第电容材料)在VACNT表面上的均匀沉积,以及使用冷冻干燥来保持垂直排列结构。表达和讨论了实现这些目标所需的所有考虑因素。总的来说,在对VACNT电极进行法拉第电容修改后,可以从水性电解质中获得相当的能量密度。本论文的第3章和第5章将材料纳入作者发表的同行评审期刊论文中。

著录项

  • 作者

    Oguntoye, Moses.;

  • 作者单位

    Tulane University School of Science and Engineering.;

  • 授予单位 Tulane University School of Science and Engineering.;
  • 学科 Chemical engineering.;Materials science.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

  • 入库时间 2022-08-17 11:54:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号