首页> 外文期刊>Composite Structures >Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete
【24h】

Hybrid regression and machine learning model for predicting ultimate condition of FRP-confined concrete

机译:用于预测FRP限制混凝土终极条件的混合回归和机器学习模型

获取原文
获取原文并翻译 | 示例

摘要

The accurate design-oriented model for concrete confined with fiber-reinforced polymer (FRP) is important to provide safe design of this composite system. In this paper, the response surface model (RSM) is coupled with support vector regression (SVR) for developing a novel hybrid model, namely RSM-SVR, with the aim of predicting the ultimate condition of FRP-confined concrete. Predictions obtained by the proposed model were compared with those by six empirical models and two data-driven models of RSM and SVR for database containing 780-test column results with circular cross section. Statistical analysis reveals that the proposed RSMSVR model predicts the compressive strength and corresponding axial strain of the concrete confined with FRPs more accurately in comparison with the existing models. The results also show that RSM-SVR and SVR models provide stable predictions of strength and strain enhancement ratios for lateral confining ratio of 1 while the other models exhibit chaotic model error. The high accuracy and stable predictions by the proposed model are achieved based on its high flexibility and robustness in capturing the effect of lateral confining pressure as the interaction between the concrete core and FRP jacket in comparison with the existing models.
机译:精确的设计型混凝土的模型局限性,纤维增强聚合物(FRP)非常重要,可以提供这种复合系统的安全设计。在本文中,响应表面模型(RSM)与支持向量回归(SVR)耦合,用于开发新颖的混合模型,即RSM-SVR,目的是预测FRP限制混凝土的最终条件。将通过拟议模型获得的预测与六个经验模型和两个数据驱动模型的RSM和SVR的数据驱动模型进行了比较,其中包含780个测试列结果与圆形横截面。统计分析显示,与现有模型相比,所提出的RSMSVR模型预测混凝土的抗压强度和相应的混凝土夹紧围绕FRP。结果还表明,RSM-SVR和SVR模型提供了对横向限制比的强度和应变增强比的稳定预测> 1,而其他模型表现出混沌模型误差。基于其在与现有模型相比,基于其在捕获横向限制压力与FRP夹克之间的相互作用的高度灵活性和稳健性时,实现了所提出的模型的高精度和稳定预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号