首页> 外文期刊>Composite Structures >Data-driven analysis on ultimate axial strain of FRP-confined concrete cylinders based on explicit and implicit algorithms
【24h】

Data-driven analysis on ultimate axial strain of FRP-confined concrete cylinders based on explicit and implicit algorithms

机译:基于显式和隐式算法的FRP限制混凝土圆柱体终极轴向应变的数据驱动分析

获取原文
获取原文并翻译 | 示例

摘要

The existing models for predicting the ultimate axial strain of FRP-confined concrete cylinders are mainly derived from the regression analyses on small datasets. Such models usually targeted more specific use cases and could give inaccurate outcomes when generalized. To this end, this paper presents the data-driven Bayesian probabilistic and machine learning prediction models (i.e., back-propagation artificial neural network, multi-gene genetic programming and support vector machine) with high accuracy. First, a comprehensive database containing 471 test results on the ultimate conditions of FRP-confined concrete cylinders was elaborately compiled from the open literature, and the quality of the database was examined and evaluated in detail. Then, an updating procedure characterized by the Bayesian parameter estimation technique was developed to evaluate the critical parameters in the existing models and refine the selected existing models accordingly. The database was also employed for deriving machine learning models. The computational efficiency, transferability and precision of the proposed models are verified. Results show that the proposed Bayesian posterior models, back-propagation artificial neural network, multi-gene genetic programming and support vector machine models achieved outstanding predictive performance, with the support vector machine yielding the highest prediction accuracy. The superior accuracy of the proposed models should assist various stakeholders in optimal use of FRP-confined concrete columns in diverse construction applications.
机译:用于预测FRP限制混凝土汽缸的最终轴向应变的现有模型主要来自小型数据集的回归分析。此类模型通常靶向更具体的用例,并且可以在广泛化时给出不准确的结果。为此,本文提出了具有高精度的数据驱动的贝叶斯概率和机器学习预测模型(即,反传播人工神经网络,多基因遗传编程和支持向量机)。首先,在开放文献中精致地编制了一个综合数据库,在FRP限制混凝土圆柱体的最终条件下,从开放文献中编制了一系列,并详细检查了数据库的质量。然后,开发了一种以贝叶斯参数估计技术为特征的更新过程来评估现有模型中的关键参数并相应地优化所选择的现有模型。该数据库还用于推导机器学习模型。验证了所提出的模型的计算效率,可转换性和精度。结果表明,提出的贝叶斯后型模型,背部传播人工神经网络,多基因遗传编程和支持向量机模型取得了出色的预测性能,带有支撑矢量机,产生最高的预测精度。拟议模型的卓越准确性应协助各种利益相关者在各种施工应用中最佳地使用FRP限制混凝土柱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号