首页> 外文期刊>Composite Structures >Finite deformations of curved laminated St. Venant-Kirchhoff beam using layer-wise third order shear and normal deformable beam theory (TSNDT)
【24h】

Finite deformations of curved laminated St. Venant-Kirchhoff beam using layer-wise third order shear and normal deformable beam theory (TSNDT)

机译:基于层状三阶剪切和法向可变形梁理论(TSNDT)的弯曲St. Venant-Kirchhoff层合梁的有限变形

获取原文
获取原文并翻译 | 示例

摘要

A layer-wise third order shear and normal deformable plate/shell theory (TSNDT) incorporating all geometric nonlinearities is used to study finite transient deformations of a curved laminated beam composed of a St. Venant-Kirchhoff material. In the TSNDT all displacement components of a point are expressed as 3rd order polynomials in the thickness coordinate in each layer while maintaining the displacement continuity across adjoining layers. No shear correction factor is used. Transverse shear and transverse normal stresses are found from the computed displacement fields and the constitutive relation (i.e., no stress recovery technique is employed). For the St. Venant-Kirchhoff material the strain energy density is a quadratic function of the Green-St. Venant strain tensor appropriate for finite deformations. The software based on the finite element method (FEM) capable of solving static and transient nonlinear problems has been verified by using the method of manufactured solutions. Furthermore, results computed with the TSNDT have been found to agree well with those obtained using the commercial software ABAQUS, and C3D20 elements. Significant contributions of the work include developing a TSNDT considering all geometric nonlinearities and a materially objective constitutive relation, using the method of manufactured solutions to verify the numerical solution of transient nonlinear problems, and showing that results from the plate theory agree well with those from the analysis of plane strain nonlinear problems using the finite elasticity theory. Plate problems using the TSNDT can be analyzed with piecewise linear basis functions in the FEM.
机译:包含所有几何非线性的分层三阶剪切和法向可变形板/壳理论(TSNDT)用于研究由St. Venant-Kirchhoff材料组成的弯曲层压梁的有限瞬态变形。在TSNDT中,点的所有位移分量均表示为每一层厚度坐标中的三阶多项式,同时保持相邻层之间的位移连续性。没有使用剪切校正因子。从计算的位移场和本构关系中可以找到横向剪应力和横向法向应力(即不采用应力恢复技术)。对于St. Venant-Kirchhoff材料,应变能密度是Green-St。的二次函数。 Venant应变张量适合有限变形。使用制造解决方案的方法验证了基于有限元方法(FEM)的软件能够解决静态和瞬态非线性问题。此外,已经发现使用TSNDT计算的结果与使用商业软件ABAQUS和C3D20元素获得的结果非常吻合。这项工作的重要贡献包括:考虑所有几何非线性和实质性的本构关系,开发了TSNDT,使用制造的方法验证了瞬态非线性问题的数值解,并证明了板理论的结果与TNNDT的结果吻合良好。有限弹性​​理论分析平面应变非线性问题使用TSNDT的印版问题可以通过FEM中的分段线性基函数进行分析。

著录项

  • 来源
    《Composite Structures》 |2013年第3期|147-164|共18页
  • 作者

    R.C. Batra; J.Xiao;

  • 作者单位

    Department of Engineering Science and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;

    Department of Engineering Science and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TSNDT; finite deformations; method of manufactured solutions; st. venant-kirchhoff elastic material;

    机译:TSNDT;有限变形溶液的制造方法;圣Venant-Kirchhoff弹性材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号