首页> 外文期刊>Composite Structures >An efficient approach for predicting low-velocity impact force and damage in composite laminates
【24h】

An efficient approach for predicting low-velocity impact force and damage in composite laminates

机译:一种预测复合材料层压板低速冲击力和损坏的有效方法

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient approach is presented to predict the critical impact force and corresponding damage in composite laminates subjected to low-velocity impact. In developing such approach, stress analysis was conducted first for a 4 mm thick quasi-isotropic laminate to determine the potential failure modes and locations under the critical impact force. Three finite element models were subsequently built to simulate the damage in the upper, middle and lower interfaces and investigate the effect of each damage mode on the laminate stiffness. It is found that delamination adjacent to the impact point is suppressed by the high compressive through-thickness stress resulting in negligible reduction of the laminate stiffness. Both the delamination in interfaces adjacent to the mid-thickness plane and matrix fracture on the lower face can cause the first load drop, which corresponds to the critical impact force. The former is the main causative mechanism for the laminate studied in this paper. A simplified and efficient finite element model, which takes account of the delamination damage adjacent to the mid-thickness plane and the lower face, is developed that is computationally affordable and delivers acceptable prediction of the critical impact force, damage shape and size, by both quasi-static load and dynamic impact analyses. (C) 2015 Elsevier Ltd. All rights reserved.
机译:提出了一种有效的方法来预测复合材料层压板在受到低速冲击时的临界冲击力和相应的损坏。在开发这种方法时,首先对4 mm厚的各向同性层压板进行了应力分析,以确定在临界冲击力下的潜在破坏模式和位置​​。随后建立了三个有限元模型,以模拟上,中和下界面的损伤,并研究每种损伤模式对层压板刚度的影响。发现通过高压缩贯穿厚度应力抑制了与冲击点相邻的分层,从而导致层压材料刚度的降低可忽略不计。与中厚度平面相邻的界面中的分层以及下表面的基体断裂都可能导致第一载荷下降,这对应于临界冲击力。前者是本文研究的层压板的主要原因。开发了一种简化且有效的有限元模型,该模型考虑了靠近中厚度平面和下表面的分层损坏,该计算在价格上可以承受,并且可以通过两种方式对临界冲击力,损坏形状和大小提供可接受的预测准静态载荷和动态冲击分析。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号