首页> 外文期刊>Composite Structures >Stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient
【24h】

Stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient

机译:可变帕斯捷尔纳克地基上不对称锥形夹心梁的稳定性,承受热梯度的脉动轴向载荷

获取原文
获取原文并翻译 | 示例

摘要

The static and parametric stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient under two different boundary conditions is investigated. The complete mathematical modeling of the system has been derived by the application of Hamilton's principle which helps in getting the admissible path for the system. The equations of motion and boundary conditions obtained from the Hamilton's equation are non-dimensionalized. A set of Hill's equation are obtained from the non-dimensional equations of motion by the application of generalized Galerkin's method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of taper, elastic foundation, thermal gradient, core-loss factor, geometric parameter, modulus ratios and shear parameter on static buckling loads and parametric regions of instability are investigated. (C) 2016 Elsevier Ltd. All rights reserved.
机译:研究了在两个不同边界条件下,在具有热梯度的脉动轴向载荷作用下,基于可变Pasternak地基的不对称锥形夹层梁的静态和参数稳定性。系统的完整数学建模是通过汉密尔顿原理得出的,汉密尔顿原理有助于获得系统的允许路径。从汉密尔顿方程获得的运动方程和边界条件是无量纲的。应用广义Galerkin方法,从无量纲运动方程中得到了一组希尔方程。使用Saito-Otomi条件获得参数不稳定性区域。研究了锥度,弹性基础,热梯度,堆芯损耗因子,几何参数,模量比和剪切参数对静态屈曲载荷和不稳定性参数区域的影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号