首页> 外文期刊>Composite Structures >Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm
【24h】

Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm

机译:遗传算法优化的人工神经网络对GFRP筋混凝土粘结强度的评估与预测

获取原文
获取原文并翻译 | 示例

摘要

Assessment of bond behavior of glass fiber-reinforced polymer (GFRP) bars to concrete plays an important role in design and implementation of the polymer-matrix composites (PMCs). This study develops an optimized modeling strategy that harnesses the strong nonlinear mapping ability of artificial neural network (ANN) with the global searching ability of genetic algorithm (GA) for bond strength prediction. The factors that affect the bond strength were identified from the test data of 157 beam-test specimens in the literature, in terms of bar conditions (bar diameter, surface, position and embedment length), concrete (thickness of concrete cover and concrete compressive strength), and confinement from transverse reinforcements. Comparison of the bond strengths predicted by the proposed optimized ANN-GA model with test results showed a higher accuracy with less scatter compared to the conventional ANN model. (C) 2016 Elsevier Ltd. All rights reserved.
机译:玻璃纤维增​​强聚合物(GFRP)钢筋与混凝土的粘结性能评估在聚合物基复合材料(PMC)的设计和实施中起着重要作用。这项研究开发了一种优化的建模策略,该算法利用了人工神经网络(ANN)强大的非线性映射能力和遗传算法(GA)的全局搜索能力来预测结合强度。从文献中的157个梁测试样本的测试数据中确定了影响粘结强度的因素,包括钢筋条件(钢筋直径,表面,位置和包埋长度),混凝土(混凝土覆盖层的厚度和混凝土抗压强度) ),并限制于横向钢筋。与传统的ANN模型相比,通过建议的优化ANN-GA模型预测的结合强度与测试结果的比较显示出更高的准确性和更少的分散性。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号