首页> 外文期刊>Composite Structures >Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading
【24h】

Meso-scale progressive damage modeling and life prediction of 3D braided composites under fatigue tension loading

机译:疲劳拉伸载荷下3D编织复合材料的细观渐进损伤建模和寿命预测

获取原文
获取原文并翻译 | 示例

摘要

3D braided composites have broad potential applications in the high-tech industries because of their superior mechanical properties. Fatigue is an essential design factor for their use in those engineering applications. The fatigue damage accumulation during cyclic loading should be involved in the numerical models in order to predict the fatigue life accurately. In this paper, a unit-cell based finite element model in conjunction with continuum damage mechanics (CDM) is developed for simulating the fatigue damage evolution process and predicting the fatigue life of 3D braided composites under fatigue tension loading. This meso-scale fatigue modeling, including stress analysis, failure criteria and material property degradation scheme, is implemented via a user-material subroutine UMAT based on ABAQUS/Standard platform with FORTRAN code. The fatigue damage initiation and propagation processes of 3D braided composites with typical braiding angles on the unit-cell model as a function of number of cycles are presented in detail. The fatigue life of 3D braided composites is predicted from the computedS-Ncurve and the stiffness degradation process is also investigated. The obtained numerical results indicate that the present model can provide a suitable reference to the numerical study of the fatigue issues in other textile composites.
机译:3D编织复合材料具有卓越的机械性能,因此在高科技行业具有广泛的潜在应用。疲劳是在这些工程应用中使用它们的重要设计因素。为了准确地预测疲劳寿命,数值模型中应包括循环载荷下的疲劳损伤累积。本文建立了基于单元元的有限元模型,并结合了连续损伤力学(CDM),以模拟疲劳损伤演化过程并预测疲劳载荷作用下3D编织复合材料的疲劳寿命。这种中尺度疲劳建模,包括应力分析,破坏准则和材料性能退化方案,是通过基于ABAQUS / Standard平台并带有FORTRAN代码的用户材料子程序UMAT来实现的。详细介绍了在单元格模型上具有典型编织角的3D编织复合材料的疲劳损伤萌生和传播过程,该过程是循环次数的函数。通过计算的S-N曲线可预测3D编织复合材料的疲劳寿命,并研究其刚度降低过程。获得的数值结果表明,该模型可以为其他纺织品复合材料疲劳问题的数值研究提供合适的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号