首页> 外文期刊>Composite Structures >Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory
【24h】

Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory

机译:使用非局部应变梯度理论的功能梯度(FG)纳米束静态,屈曲,自由和强迫振动的一些闭式解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, static bending, buckling, free and forced vibration of functionally graded (FG) nanobeams are studied within the framework of the recently proposed nonlocal strain gradient theory and the Euler-Bernoulli beam theory. The material properties of nanobeam are presumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fraction of the constituents. The governing equation and the related boundary conditions are derived via the principle of the calculus of variation. In order to eliminate the axial displacement in the formulation, the concept of the neutral surface is adopted. Some analytical solutions are obtained for the static displacement, critical buckling load, free vibration frequencies and the dynamic displacement for the case of the simply-supported end condition. In the dynamic analysis, three different loading cases, a moving load with constant velocity, point and distributed harmonic loads, are considered, and Duhamel's integration is utilized for obtaining the corresponding dynamic deflections. Several numerical examples are presented in figures and tables in order to examine the effects of the strain gradient and the nonlocal parameters, the gradient index, the excitation frequency and the moving load velocity on the mechanical behavior of FG nanobeam.
机译:本文在最近提出的非局部应变梯度理论和Euler-Bernoulli梁理论的框架内研究了功能梯度(FG)纳米束的静态弯曲,屈曲,自由振动和强迫振动。假定根据成分的体积分数,根据简单的幂律分布,纳米束的材料特性在厚度方向上分级。通过变分原理,推导了控制方程和相关的边界条件。为了消除配方中的轴向位移,采用了中性表面的概念。对于简单支撑的最终条件,可以得到静态位移,临界屈曲载荷,自由振动频率和动态位移的一些解析解。在动力分析中,考虑了三种不同的载荷情况,即具有恒定速度的动载荷,点载荷和分布的谐波载荷,并利用Duhamel的积分来获得相应的动态挠度。为了说明应变梯度和非局部参数,梯度指数,激发频率和移动载荷速度对FG纳米束力学行为的影响,在图表中给出了几个数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号