首页> 外文期刊>Composite Structures >Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack
【24h】

Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack

机译:板分解技术在含裂纹的功能梯度板非线性和屈曲分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear and post-buckling behaviors of internally cracked functionally graded plates subjected to uniaxial compressive loading have been presented in this paper. A general nonlinear mathematical model for cracked functionally graded plates has been developed based on the first order shear deformation theory within the framework of von-Karman nonlinearity. To approximate the primary variables, Legendre polynomials are used in the current research. The crack is modelled by decomposing the entire domain of the plate into several sub-plates and therefore, a plate decomposition technique is applied. In this study, the penalty technique is used to enforce interface continuity between the sub-plates. The integrals of the potential energy are numerically computed by Gauss-Lobatto quadrature formulas to get adequate accuracy. Finally, the obtained non-linear system of equations is solved by the well-known Newton-Raphson technique. Results are presented to show the influence of crack length, various locations of crack, crack direction, boundary conditions and volume fraction index in nonlinear behavior of functionally graded plates.
机译:提出了内部开裂的功能梯度板在单轴压缩载荷作用下的非线性和屈曲行为。基于一阶剪切变形理论,在von-Karman非线性框架内,建立了裂纹的功能梯度板的通用非线性数学模型。为了近似主变量,当前研究中使用了勒让德多项式。通过将板的整个区域分解为几个子板来模拟裂纹,因此,应用了板分解技术。在这项研究中,惩罚技术用于增强子板之间的界面连续性。通过高斯-洛巴托(Gauss-Lobatto)正交公式对势能的积分进行数值计算,以获得足够的精度。最后,通过众所周知的牛顿-拉夫森技术求解所获得的非线性方程组。结果表明,裂纹长度,裂纹的不同位置,裂纹方向,边界条件和体积分数指数对功能梯度板的非线性行为的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号