首页> 外文期刊>Composite Structures >A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials
【24h】

A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials

机译:用于统计非均质材料的粘弹性分析的二阶多尺度方法

获取原文
获取原文并翻译 | 示例

摘要

An effective second-order multiscale approach is developed in this work to discuss viscoelastic properties of statistically inhomogeneous materials. In these materials, the sophisticated microscale structure of inclusions, including related shape, orientation, size, spatial distribution, volume fraction and so on, results in varying of the macroscale properties. At first, the Laplace transform is applied to the linear viscoelastic problems, and expected relaxation modulus in Laplace domain for the materials is given. Also, the second-order multiscale formulas for evaluating the viscoelastic problems of statistically inhomogeneous materials are derived. Next, the stochastic multiscale algorithm is proposed, and the expected relaxation moduli in time domain are obtained by the least-square and inverse Laplace transform. The salient features of the proposed approach are the asymptotic high-order homogenizations that do not require high-order continuity of the coarse-scale (or macroscale) solutions and can handle the random materials with complicated microstructure at a fraction of computational cost. Finally, some examples for the composites are computed by the effective algorithm, and compared with the data by the theoretical models and experimental results. The comparison illustrates that the stochastic multiscale model is efficient for determining the viscoelastic properties of the materials and shows their potential application in practical engineering calculation.
机译:在这项工作中开发了一种有效的二阶多尺度方法,以讨论统计上不均匀材料的粘弹性质。在这些材料中,包含物的复杂微观结构(包括相关的形状,方向,大小,空间分布,体积分数等)导致宏观性质的变化。首先,将拉普拉斯变换应用于线性粘弹性问题,并给出了材料在拉普拉斯域中的预期松弛模量。此外,推导了用于评估统计上不均匀材料的粘弹性问题的二阶多尺度公式。接下来,提出了随机多尺度算法,并通过最小二乘和拉普拉斯逆变换获得了时域上的期望松弛模量。所提出方法的显着特征是渐近高阶均质化,它不需要粗糙尺度(或宏观尺度)解决方案的高阶连续性,并且可以以很小的计算成本处理具有复杂微观结构的随机材料。最后,通过有效算法计算了复合材料的一些实例,并通过理论模型和实验结果与数据进行了比较。比较表明,随机多尺度模型对于确定材料的粘弹性是有效的,并显示了它们在实际工程计算中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号