首页> 外文期刊>Composite Structures >Development of a computational predictive model for the nonlinear in-plane compressive response of sandwich panels with bio-foam
【24h】

Development of a computational predictive model for the nonlinear in-plane compressive response of sandwich panels with bio-foam

机译:生物泡沫夹芯板非线性面内压缩响应计算预测模型的建立

获取原文
获取原文并翻译 | 示例

摘要

In this study, sandwich structures with commercial-grade aluminium alloy skins and bio-inspired core (mycofoam) were fabricated and tested to obtain the axial compression response in terms of in-plane deformation measures and stress. The ensuing spectrum of response data from experimental tests were then fed into three different data driven models that include simple linear regression (SLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The performance of the models is compared in estimating the compressive response of sandwich panels with the mycofoam. To assess the performance of models, coefficient of determination (R-2), root mean squared error (RMSE) and mean absolute error (MAE) are used. Eleven different training algorithms are tested in ANN and Bayesian Regularization backpropagation with 9 hidden neurons is found to be the optimum ANN structure. In ANFIS model, triangular-shaped membership function (MF) with 20 rules gives the highest performance among 8 different MFs. All three models are found to be capable in estimating the compressive response. ANFIS model has the highest performance, followed by ANN model then SLR model with R-2, RMSE and MAE being 0.9999, 0.0818, 0.0415 for the training dataset; 0.9999, 0.1626, 0.0491 for the testing dataset and 0.9999, 0.0943, 0.0437 for the validation dataset, respectively.
机译:在这项研究中,制造并测试了具有商业级铝合金表皮和生物启发型芯(mycofoam)的三明治结构,以获得了基于面内变形量度和应力的轴向压缩响应。随后将来自实验测试的响应数据频谱输入到三个不同的数据驱动模型中,这些模型包括简单线性回归(SLR),人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)。比较模型的性能以估计夹心板与霉菌泡沫的压缩响应。为了评估模型的性能,使用了确定系数(R-2),均方根误差(RMSE)和平均绝对误差(MAE)。在ANN中测试了11种不同的训练算法,发现9个隐藏神经元的贝叶斯正则反向传播是最佳的ANN结构。在ANFIS模型中,具有20条规则的三角形隶属函数(MF)在8个不同MF中表现出最高的性能。发现所有这三个模型都能够估计压缩响应。对于训练数据集,ANFIS模型的性能最高,其次是ANN模型,其次是SLR模型,R-2,RMSE和MAE为0.9999、0.0818、0.0415;测试数据集分别为0.9999、0.1626、0.0491和验证数据集为0.9999、0.0943、0.0437。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号