首页> 外文期刊>Complex Analysis and Operator Theory >Symmetric Operators and Reproducing Kernel Hilbert Spaces
【24h】

Symmetric Operators and Reproducing Kernel Hilbert Spaces

机译:对称算子和可再生内核希尔伯特空间

获取原文
获取原文并翻译 | 示例

摘要

We establish the following sufficient operator-theoretic condition for a subspace S Ì L2 (mathbbR, dn){S subset L^2 (mathbb{R}, dnu)} to be a reproducing kernel Hilbert space with the Kramer sampling property. If the compression of the unitary group U(t) := e itM generated by the self-adjoint operator M, of multiplication by the independent variable, to S is a semigroup for t ≥ 0, if M has a densely defined, symmetric, simple and regular restriction to S, with deficiency indices (1, 1), and if ν belongs to a suitable large class of Borel measures, then S must be a reproducing kernel Hilbert space with the Kramer sampling property. Furthermore, there is an isometry which acts as multiplication by a measurable function which takes S onto a reproducing kernel Hilbert space of functions which are analytic in a region containing mathbbR{mathbb{R}} , and are meromorphic in mathbbC{mathbb{C}} . In the process of establishing this result, several new results on the spectra and spectral representations of symmetric operators are proven. It is further observed that there is a large class of de Branges functions E, for which the de Branges spaces H(E) Ì L2(mathbbR, |E(x)|-2dx){mathcal{H}(E) subset L^{2}(mathbb{R}, |E(x)|^{-2}dx)} are examples of subspaces satisfying the conditions of this result.
机译:我们为子空间SÌL 2 (mathbbR,dn){S子集L ^ 2(mathbb {R},dnu)}建立一个可重现的内核希尔伯特空间,建立了以下充分的算子理论条件具有Kramer采样属性。如果自伴随算子M乘以自变量对自伴算子M生成的group群U(t):= e itM 的压缩,则对t≥0的S为半群,如果M对S具有严格定义,对称,简单且规则的约束,具有不足指数(1,1),并且如果ν属于适当的大型Borel度量类别,则S必须是具有Kramer采样属性的可再生核Hilbert空间。此外,还有一个等距图,它与可测量函数相乘,该函数将S带入函数的再生内核希尔伯特空间,该函数在包含mathbbR {mathbb {R}}的区域中进行分析,并在mathbbC {mathbb {C}中为亚纯}。在建立该结果的过程中,证明了关于对称算子的光谱和光谱表示的几个新结果。进一步观察到,存在大量的de Branges函数E,对于这些de Branges空间H(E)ÌL 2 (mathbbR,| E(x)| -2 dx){数学{H}(E)子集L ^ {2}(mathbb {R},| E(x)| ^ {-2} dx)}是满足该结果条件的子空间的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号