首页> 外文期刊>Communications Surveys & Tutorials, IEEE >Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
【24h】

Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

机译:三十年的机器学习:帕累托 - 最优无线网络的道路

获取原文
获取原文并翻译 | 示例

摘要

Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.
机译:未来的无线网络在支持军事和文职领域的广泛复杂的令人信服的应用方面具有实质性潜力,用户能够享受高速,低延迟,低成本和可靠的信息服务。实现这一雄心勃勃的目标需要新的无线电技术,可用于自适应学习和智能决策,因为网络结构和无线服务的复杂性异构性质。机器学习(ML)算法在支持大数据分析,高效参数估计和交互式决策方面取得了巨大成功。因此,在本文中,我们通过详细阐述监督学习,无监督的学习,加强学习和深度学习来审查ML的三十年历史。此外,我们在无线网络的引人注目应用中调查其就业,包括异构网络(Hetnets),认知收音机(CR),物联网(物联网),机器到机器网络(M2M)等。本文旨在协助读者澄清各种ML算法的动机和方法,以便为迄今为止的未开发的服务以及未来无线网络的情况调用它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号