首页> 外文期刊>Communications surveys & tutorials >An Overview on Application of Machine Learning Techniques in Optical Networks
【24h】

An Overview on Application of Machine Learning Techniques in Optical Networks

机译:计算机学习技术在光网络中的应用概述

获取原文
获取原文并翻译 | 示例

摘要

Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical toots, machine learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing, and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude this paper proposing new possible research directions.
机译:今天的电信网络已成为大量广泛异构数据的来源。该信息可以从网络流量迹线,网络警报,信号质量指示符,用户的行为数据等检索。需要高级数学工具来从这些数据中提取有意义的信息,并采取与网络从网络的正确运行相关的决定-generated数据。在这些数学嘟嘟,机器学习(ML)被认为是执行网络数据分析的最有希望的方法方法之一,并实现自动网络自配置和故障管理。光学通信网络领域的ML技术采用了过去几年光网络面临的网络复杂性的前所未有的增长。这种复杂性增加是由于引入了通过使用相干传输/接收技术的使用,引入了大量可调节和相互依存的系统参数(例如,路由配置,调制格式,符号率,编码方案等)数字信号处理,以及光纤传播中非线性效应的补偿。在本文中,我们概述了ML对光通信和网络的应用。我们分类和调查处理该主题的相关文献,我们还为对该领域感兴趣的研究人员和从业者提供介绍性教程。虽然最近出现了众多研究论文,但将ML与光学网络的应用仍处于起步阶段:为了刺激在该领域的进一步工作,我们得出本文提出了新的可能研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号