首页> 外文期刊>Communications surveys & tutorials >An Overview on Application of Machine Learning Techniques in Optical Networks
【24h】

An Overview on Application of Machine Learning Techniques in Optical Networks

机译:机器学习技术在光网络中的应用概述

获取原文
获取原文并翻译 | 示例

摘要

Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical toots, machine learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing, and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude this paper proposing new possible research directions.
机译:当今的电信网络已成为大量异构数据的来源。可以从网络流量跟踪,网络警报,信号质量指标,用户的行为数据等中检索此信息。需要高级数学工具从这些数据中提取有意义的信息,并从网络中做出与网络正常运行有关的决策生成的数据。在这些数学名声中,机器学习(ML)被视为执行网络数据分析并实现自动网络自配置和故障管理的最有前途的方法之一。近年来,光网络面临着前所未有的网络复杂性增长,促使ML技术在光通信网络领域的采用。这种复杂性的增加是由于引入了大量可调节且相互依赖的系统参数(例如,路由配置,调制格式,符号速率,编码方案等),这些参数通过使用先进的相干传输/接收技术而得以实现。数字信号处理,以及补偿光纤传播中的非线性影响。在本文中,我们概述了ML在光通信和网络中的应用。我们对与该主题相关的文献进行分类和调查,还为对这一领域感兴趣的研究人员和从业人员提供了有关机器学习的入门教程。尽管最近出现了许多研究论文,但是ML在光网络中的应用仍处于起步阶段:为了刺激这一领域的进一步工作,我们得出结论,本文提出了新的可能的研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号