首页> 外文期刊>Communications in Statistics - Simulation and Computation >A Novel Collinearity-Influential Observation Diagnostic Measure Based on a Group Deletion Approach
【24h】

A Novel Collinearity-Influential Observation Diagnostic Measure Based on a Group Deletion Approach

机译:基于群删除法的共线性影响观测诊断新方法

获取原文
获取原文并翻译 | 示例

摘要

High leverage points can induce or disrupt multicollinearity patterns in data. Observations responsible for this problem are generally known as collinearity-influential observations. A significant amount of published work on the identification of collinearity-influential observations exists; however, we show in this article that all commonly used detection techniques display greatly reduced sensitivity in the presence of multiple high leverage collinearity-influential observations. We propose a new measure based on a diagnostic robust group deletion approach. Some practical cutoff points for existing and developed diagnostics measures are also introduced. Numerical examples and simulation results show that the proposed measure provides significant improvement over the existing measures.
机译:高杠杆点可以诱发或破坏数据中的多重共线性模式。引起该问题的观测通常被称为共线性影响观测。关于识别共线性影响的观察结果,已发表了大量著作。但是,我们在本文中表明,在存在多个影响高线性共线性的观察的情况下,所有常用的检测技术均显示出大大降低的灵敏度。我们提出了一种基于诊断鲁棒组删除方法的新措施。还介绍了现有和已开发的诊断措施的一些实际分界点。数值算例和仿真结果表明,所提出的措施与现有措施相比有明显改进。

著录项

  • 来源
  • 作者

    Arezoo Bagheri;

  • 作者单位

    Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, Serdang, Selanger, Malaysia;

    Department of Mathematical Sciences, Ball State University, Muncie, Indiana, USA;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号