首页> 外文期刊>Communications in Statistics >Outlier detection using PCA mix based T~2 control chart for continuous and categorical data
【24h】

Outlier detection using PCA mix based T~2 control chart for continuous and categorical data

机译:基于PCA混合的T〜2控制图表的连续和分类数据的异常检测

获取原文
获取原文并翻译 | 示例

摘要

Outliers presence may lead to misdetection on out-of-control observations in Phase II, therefore, they should be cleaned in Phase I. This paper proposes PCA Mix based T-2 chart with Kernel Density control limit for mixed continuous and categorical data. Simulation studies are conducted to evaluate the performance of proposed chart in detecting outliers from clean and contaminated data. The proposed chart has better performance than the benchmark in monitoring clean data. For contaminated data, proposed chart has optimal performance in situation when categorical data are generated from multinomial distribution with balanced parameters. This is confirmed by simulated and real dataset. Compared to the conventional and other robust charts, the proposed chart demonstrated a great performance by success to detect more outlier correctly for the higher percentage of outlier added.
机译:异常值的存在可能导致误认为是II期的反对观察结果,因此,它们应该在I期中清洁。本文提出了基于PCA混合的T-2图表,其中包含核心密度控制限制混合连续和分类数据。 进行仿真研究以评估所提出的图表在侦测清洁和污染数据的异常值中的性能。 所提出的图表具有比监控清洁数据的基准更好的性能。 对于受污染的数据,所提出的图表在与具有平衡参数的多项式分布生成的情况时,在情况下具有最佳性能。 这是通过模拟和实时数据集确认。 与传统和其他强大的图表相比,所提出的图表通过成功展示了一个很大的性能,以便为增加的异常值百分比正确地检测更多的异常值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号