首页> 外文期刊>Communications in Statistics >Closed-form Bayesian image denoising: improving the adaptive Wiener filter through pairwise Gaussian-Markov random fields
【24h】

Closed-form Bayesian image denoising: improving the adaptive Wiener filter through pairwise Gaussian-Markov random fields

机译:封闭式贝叶斯图像去噪:通过成对高斯 - 马尔可夫随机字段改进自适应维纳滤波器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a contextual adaptive Wiener filter by using an isotropic pairwise Gaussian Markov random field (GMRF) prior to model the spatial correlation existing in natural images. The motivation for the development of the proposed method is that, in the context of Bayesian estimation, the Wiener filter is known to be the optimal estimator under Gaussian noise. The resulting closed-form filter can be viewed as a two-stage denoising process in which the first stage considers independent pixels whereas the second stage incorporates a degree of spatial dependence by means of maximum pseudo-likelihood estimation of the coupling parameter. The obtained results show that the proposed method outperforms the classical pointwise Wiener filter, in some cases reaching results comparable to some state-of-the-art methods in denoising, but with a reduced computational cost.
机译:在本文中,我们在模拟自然图像中存在的空间相关之前,通过使用各向同性成对高斯高斯马尔可夫随机字段(GMRF)提出了一种上下文自适应维纳滤波器。 所提出的方法的发展的动机是,在贝叶斯估计的背景下,已知维纳滤波器是高斯噪声下的最佳估计器。 所得到的闭合滤波器可以被视为两级去噪过程,其中第一阶段考虑独立像素,而第二级通过耦合参数的最大伪似然估计包含一定程度的空间依赖性。 所获得的结果表明,该方法在某些情况下占据了经典尖的维纳滤波器,在某些情况下达到了与某些最先进的方法相当的去噪,但计算成本降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号